# Syllabus Book

# 3<sup>rd</sup> Year B. Tech. Mechanical Engineering



**P P Savani University** School of Engineering Department of Mechanical Engineering

Effective From: 2019-20 Authored by: P P Savani University

|     |             |                                                                     |           | P P SAVA  | NI UNIVERS   | ITY     |          |           |                    |     |                 |     |        |       |
|-----|-------------|---------------------------------------------------------------------|-----------|-----------|--------------|---------|----------|-----------|--------------------|-----|-----------------|-----|--------|-------|
|     |             |                                                                     |           | SCHOOL O  | F ENGINEEF   | RING    |          |           |                    |     |                 |     |        |       |
|     |             | TEACHING & EXAMIN                                                   | ATION SCH | EME FOR E | B. TECH. THI | RD YEAI | R MECHAN | ICAI      | PROG               | RAM | ME              |     |        |       |
|     |             |                                                                     |           | Tea       | ching Scheme | e       |          |           | Examination Scheme |     |                 |     |        |       |
| Sem | Course Code | Course Title                                                        |           | Contact   | Hours        |         | Credit   | Theory Pr |                    | Pra | ctical Tutorial |     | torial | Total |
|     |             |                                                                     | Theory    | Practical | Tutorial     | Total   | Greute   | CE        | ESE                | CE  | ESE             | CE  | ESE    | Total |
|     | SEME3011    | Heat Transfer                                                       | 4         | 2         | 0            | 6       | 5        | 40        | 60                 | 20  | 30              | 0   | 0      | 150   |
|     | SEME3021    | Fluid Machines                                                      | 4         | 2         | 0            | 6       | 5        | 40        | 60                 | 20  | 30              | 0   | 0      | 150   |
|     | SEME3031    | Dynamics of Machinery                                               | 3         | 2         | 0            | 5       | 4        | 40        | 60                 | 20  | 30              | 0   | 0      | 150   |
|     | SEME3041    | Thermal Engineering                                                 | 3         | 0         | 0            | 3       | 3        | 40        | 60                 | 0   | 0               | 0   | 0      | 100   |
| 5   | SEME3051    | Production Technology                                               | 3         | 2         | 0            | 5       | 4        | 40        | 60                 | 20  | 30              | 0   | 0      | 150   |
|     | SEPD3010    | Professional                                                        | 1         | 2         | 0            | 3       | 2        | 0         | 0                  | 50  | 50              | 0   | 0      | 100   |
|     | 5010        | Communication & Soft Skills                                         | -         | 2         | 0            | 5       | 4        | Ŭ         | U                  | 50  | 50              | Ū   | Ū      | 100   |
|     |             | Elective-I                                                          |           |           |              | 3       |          |           |                    | 100 |                 |     |        |       |
|     | SEME3910    | Summer Training                                                     |           | 4         |              | 0       | 4        | 0         | 0                  | 100 | 0               | 0   | 0      | 100   |
|     |             |                                                                     |           |           | Total        | 31      | 30       |           |                    |     |                 |     |        | 1000  |
|     | SEME3060    | Design of Basic Machine<br>Elements                                 | 4         | 0         | 1            | 5       | 5        | 40        | 60                 | 0   | 0               | 50  | 0      | 150   |
|     | SEME3071    | Internal Combustion<br>Engine & Refrigeration &<br>Air Conditioning | 4         | 2         | 0            | 6       | 5        | 40        | 60                 | 20  | 30              | 0   | 0      | 150   |
| 6   | SEME3080    | Computer Aided Design<br>and Manufacturing                          | 4         | 2         | 0            | 6       | 5        | 40        | 60                 | 20  | 30              | 0   | 0      | 150   |
|     | SEME3090    | Industrial Engineering                                              | 3         | 0         | 0            | 3       | 3        | 40        | 60                 | 0   | 0               | 0   | 0      | 100   |
|     | SEME3101    | Power Plant Engineering                                             | 3         | 0         | 1            | 4       | 4        | 40        | 60                 | 0   | 0               | 20  | 30     | 150   |
|     | SEPD3020    | Corporate Grooming &<br>Etiquette                                   | 1         | 2         | 0            | 3       | 2        | 0         | 0                  | 50  | 50              | 0   | 0      | 100   |
|     |             | Elective-II                                                         |           |           |              |         | 3        | 100       |                    |     |                 | 100 |        |       |
|     |             |                                                                     |           |           | Total        | 30      | 27       |           |                    |     |                 |     |        | 900   |

|         |          |                                         |        | Electi    | ve Courses | 5     |        |    |      |        |          |       |       |       |
|---------|----------|-----------------------------------------|--------|-----------|------------|-------|--------|----|------|--------|----------|-------|-------|-------|
| Offered | Course   | Dopartmont Floctivo                     |        | Teach     | ing Scheme |       |        |    |      | Examir | nation S | cheme |       |       |
| from    | Code     | Course Title                            |        | Contact H | lours      |       | Credit | Th | eory | Prac   | tical    | Tuto  | orial | Total |
| Sem.    | Couc     |                                         | Theory | Practical | Tutorial   | Total | creuit | CE | ESE  | CE     | ESE      | CE    | ESE   | TOtal |
|         | SEME3512 | Advanced Manufacturing<br>Technology    | 3      | 0         | 0          | 3     | 3      | 40 | 60   | 0      | 0        | 0     | 0     | 100   |
| 5       | SEME3521 | Applied Thermodynamics                  | 3      | 0         | 0          | 3     | 3      | 40 | 60   | 0      | 0        | 0     | 0     | 100   |
|         | SEME3530 | Estimation & Costing                    | 3      | 0         | 0          | 3     | 3      | 40 | 60   | 0      | 0        | 0     | 0     | 100   |
|         | SEME3551 | Electrical Technology                   | 3      | 0         | 0          | 3     | 3      | 40 | 60   | 0      | 0        | 0     | 0     | 100   |
|         | SEME3560 | Industrial Maintenance &<br>Safety      | 3      | 0         | 0          | 3     | 3      | 40 | 60   | 0      | 0        | 0     | 0     | 100   |
|         | SEME3570 | Mechatronics                            | 3      | 0         | 0          | 3     | 3      | 40 | 60   | 0      | 0        | 0     | 0     | 100   |
|         | SEME3581 | Plastics, Ceramics &<br>Composites      | 3      | 0         | 0          | 3     | 3      | 40 | 60   | 0      | 0        | 0     | 0     | 100   |
|         | SEME3590 | Course by Industrial<br>Expert          | 3      | 0         | 0          | 3     | 3      | 40 | 60   | 0      | 0        | 0     | 0     | 100   |
|         | SEME3541 | Design of Pressure Vessel<br>& Piping   | 3      | 0         | 0          | 3     | 3      | 40 | 60   | 0      | 0        | 0     | 0     | 100   |
|         | SEME3591 | Fuels & Combustion                      | 3      | 0         | 0          | 3     | 3      | 40 | 60   | 0      | 0        | 0     | 0     | 100   |
|         | SEME3602 | Gas Dynamics & Jet<br>Propulsion        | 3      | 0         | 0          | 3     | 3      | 40 | 60   | 0      | 0        | 0     | 0     | 100   |
| 6       | SEME3610 | Product Development & Value Engineering | 3      | 0         | 0          | 3     | 3      | 40 | 60   | 0      | 0        | 0     | 0     | 100   |
|         | SEME3620 | Production Management                   | 3      | 0         | 0          | 3     | 3      | 40 | 60   | 0      | 0        | 0     | 0     | 100   |
|         | SEME3631 | Automobile Engineering                  | 3      | 0         | 0          | 3     | 3      | 40 | 60   | 0      | 0        | 0     | 0     | 100   |
|         | SEME3640 | Quality Engineering                     | 3      | 0         | 0          | 3     | 3      | 40 | 60   | 0      | 0        | 0     | 0     | 100   |

# CONTENT

#### Semester 5

| Sr. No. | Course Code | Course Name                              | Page No. |
|---------|-------------|------------------------------------------|----------|
| 1       | SEME3011    | Heat Transfer                            | 1-3      |
| 2       | SEME3021    | Fluid Machines                           | 4-6      |
| 3       | SEME3031    | Dynamics of Machinery                    | 7-9      |
| 4       | SEME3041    | Thermal Engineering                      | 10-11    |
| 5       | SEME3051    | Production Technology                    | 12-14    |
| 6       | SEPD3010    | Professional Communication & Soft Skills | 15-17    |
| 7       | SEME3910    | Summer Training                          | 18-19    |

|         | Semester 6  |                                                                  |          |  |  |  |  |  |  |
|---------|-------------|------------------------------------------------------------------|----------|--|--|--|--|--|--|
| Sr. No. | Course Code | Course Name                                                      | Page No. |  |  |  |  |  |  |
| 1       | SEME3060    | Design of Basic Machine Elements                                 | 20-22    |  |  |  |  |  |  |
| 2       | SEME3071    | Internal Combustion Engine &<br>Refrigeration & Air Conditioning | 23-26    |  |  |  |  |  |  |
| 3       | SEME3080    | Computer Aided Design and<br>Manufacturing                       | 27-30    |  |  |  |  |  |  |
| 4       | SEME3090    | Industrial Engineering                                           | 31-32    |  |  |  |  |  |  |
| 5       | SEME3101    | Power Plant Engineering                                          | 33-35    |  |  |  |  |  |  |
| 6       | SEPD3020    | Corporate Grooming & Etiquette                                   | 36-37    |  |  |  |  |  |  |

#### **Electives**

| Sr. No. | Course Code | Course Name                       | Page No. |
|---------|-------------|-----------------------------------|----------|
| 1       | SEME3512    | Advance Manufacturing Technology  | 38-40    |
| 2       | SEME3521    | Applied Thermodynamics            | 41-43    |
| 3       | SEME3530    | Estimation & Costing              | 44-46    |
| 4       | SESH3551    | Electrical Technology             | 47-48    |
| 5       | SEME3560    | Industrial Maintenance & Safety   | 49-51    |
| 6       | SEME3570    | Mechatronics                      | 52-53    |
| 7       | SEME3581    | Plastics, Ceramics and Composites | 54-55    |

#### **Department of Mechanical Engineering**

Course Code: SEME3011 Course Name: Heat Transfer Prerequisite Course(s): SEME2011-Engineering Thermodynamics

#### **Teaching & Examination Scheme**:

| Teaching Scheme (Hours/Week) |           |          |                 | Examination Scheme (Marks) |        |    |           |    |          |       |
|------------------------------|-----------|----------|-----------------|----------------------------|--------|----|-----------|----|----------|-------|
| Theory                       | Dractical | Tutorial | Tutorial Cradit |                            | Theory |    | Practical |    | Tutorial |       |
| Theory                       | Flattical | Tutoriai | Creuit          | CE                         | ESE    | CE | ESE       | CE | ESE      | TOLAI |
| 04                           | 02        | 00       | 05              | 40                         | 60     | 20 | 30        | 00 | 00       | 150   |

CE: Continuous Evaluation, ESE: End Semester Exam

#### **Objective(s) of the Course:**

To help learners to

- introduce and explain basic concept, principles and modes of heat transfer.
- calculate basis calculation based on heat transfer in various applications.
- calculate basis calculation applied in heat exchanger design.
- learn about analysis and design aspects in various engineering systems related to conduction, convection and radiation heat transfer.

|        | Section I                                                                                                                                                                                                                                                                                                                         |       |           |  |  |  |  |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|--|--|--|--|--|--|
| Module | Contont                                                                                                                                                                                                                                                                                                                           | Hours | Weightage |  |  |  |  |  |  |
| No.    | Content                                                                                                                                                                                                                                                                                                                           | nours | in %      |  |  |  |  |  |  |
| 1.     | <b>Introduction</b><br>Modes of Heat Transfer – Conduction; Convection and Radiation,<br>Thermal Conductivity, Effect of temperature on thermal<br>conductivity, derivation of generalized equation in Cartesian,<br>cylindrical and spherical coordinates and its reduction to specific<br>cases, General Laws of Heat Transfer. | 04    | 10        |  |  |  |  |  |  |
| 2.     | <b>Steady State Heat Conduction</b><br>Fourier's Law, One Dimensional Steady State Conduction through<br>Plane and Composite Wall; Plane and Composite Cylinder; Plane<br>and Composite Sphere, Critical Radius of Insulation for Cylinder<br>and Sphere, Overall Heat Transfer Co-efficient.                                     | 10    | 15        |  |  |  |  |  |  |
| 3.     | <b>Unsteady State Heat Conduction (Trasient)</b><br>Lumped Parameter Analysis, Transient Heat Conduction in solids<br>with finite conduction and convection resistances.                                                                                                                                                          | 08    | 10        |  |  |  |  |  |  |
| 4.     | Heat Transfer from Extended Surfaces (Fins)<br>Types of Fins, Heat Transfer through Rectangular Fins, Infinitely<br>Long Fins, Fins Insulated at tip and fins losing the heat from the tip,<br>Efficiency and Effectiveness of Rectangular Fins, Biot Number                                                                      | 08    | 15        |  |  |  |  |  |  |

|               | Section II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                   |  |  |  |  |  |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|--|--|--|--|--|--|
| Module<br>No. | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hours | Weightage<br>in % |  |  |  |  |  |  |
| 1.            | <b>Forced and Free Convection</b><br>Newton's Law of Cooling, Dimensional Analysis applied for free<br>and forced convection, Dimensionless Numbers and their physical<br>significance, Energy integral equation of the boundary layer on a<br>flat plate for forced convection, Empirical Correlations and their<br>uses for free and forced convection, Thermal and Hydro Dynamic<br>Boundary layer, Free Convection from vertical flat plate, Blasius<br>Solution, General Solution for Von-Karman integral momentum<br>equation. | 12    | 15                |  |  |  |  |  |  |
| 2.            | Radiation<br>Absorptivity, Reflectivity and Transmissivity; Black, Grey and<br>White Body; Emissivity and Emissive Power; Laws of Radiation –<br>Planck's, Kirchoff's, Stefan Boltzmann, Wein's Displacement Law;<br>Lambert Cosine Law; Radiation Shape Factor; Heat radiate<br>between black bodies; Heat radiate between non black bodies,<br>parallel plates and infinite long cylinders.                                                                                                                                        | 07    | 15                |  |  |  |  |  |  |
| 3.            | Heat Exchangers<br>Classification, Heat Exchanger Analysis, LMTD and e-NTU for<br>parallel and counter flow heat exchanger, Fouling Factor,<br>Correction Factor for Multi passes arrangements, Introduction of<br>Heat Pipe and Compact Heat Exchanger.                                                                                                                                                                                                                                                                             | 07    | 15                |  |  |  |  |  |  |
| 4.            | <b>Two Phase Heat Transfer</b><br>Fundamentals of Boiling and Condensation, Pool Boiling and its<br>types, Condensation of vapour, Film wise and Drop wise<br>condensation.                                                                                                                                                                                                                                                                                                                                                          | 04    | 05                |  |  |  |  |  |  |

# List of Practical:

| Sr No | Name of Practical                                                   | Hours |
|-------|---------------------------------------------------------------------|-------|
| 1.    | Thermal Conductivity of Composite Wall                              | 02    |
| 2.    | Thermal Conductivity of Insulating Powder                           | 02    |
| 3.    | Heat Transfer from a Pin Fin                                        | 02    |
| 4.    | Heat Transfer by Unsteady state conduction                          | 04    |
| 5.    | Heat Transfer by Free Convection                                    | 04    |
| 6.    | Heat Transfer by Forced Convection                                  | 04    |
| 7.    | Measurement of Emissivity                                           | 02    |
| 8.    | Measurement of Stefan Boltzmann Constant                            | 02    |
| 9.    | Heat Transfer in Tubular (Parallel and Counter Flow) Heat Exchanger | 04    |
| 10.   | Heat Transfer in Plate Heat Exchanger                               | 02    |
| 11.   | Critical radius of insulation.                                      | 02    |

#### Text Book(s):

| Title                  | Author/s                        | Publication             |
|------------------------|---------------------------------|-------------------------|
| Heat and Mass Transfer | Yunus A Cengen, Afshin J Ghajar | McGraw Hill Eduction    |
| Heat Transfer          | P K Nag                         | McGraw Hill Publication |

#### **Reference Book(s):**

| Title                  | Author/s   | Publication         |
|------------------------|------------|---------------------|
| Heat and Mass Transfer | R K Rajput | S Chand Publication |
| Heat and Mass Transfer | D S Kumar  | KATSON Books        |

#### Web Material Link(s):

• <u>https://nptel.ac.in/downloads/112108149/</u>

#### **Course Evaluation:**

#### Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

#### Practical:

- Continuous Evaluation consists of Performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be considered.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

#### Course Outcome(s):

- elaborate basic concepts and modes of heat transfer.
- do basic calculation involved in heat transfer in various applications.
- do basic calculations applied in heat exchanger design.
- apply heat transfer principles to analyze and design various engineering applications.

#### **Department of Mechanical Engineering**

Course Code: SEME3021 Course Name: Fluid Machines Prerequisite Course(s): SEME2060-Fluid Mechanics

#### **Teaching & Examination Scheme:**

| Teaching Scheme (Hours/Week) |           |          |                 | Examination Scheme (Marks) |        |    |           |    |          |       |
|------------------------------|-----------|----------|-----------------|----------------------------|--------|----|-----------|----|----------|-------|
| Theory                       | Dractical | Tutorial | Tutorial Cradit |                            | Theory |    | Practical |    | Tutorial |       |
| Theory                       | Flattical | Tutoriai | Creuit          | CE                         | ESE    | CE | ESE       | CE | ESE      | TOtal |
| 04                           | 02        | 00       | 05              | 40                         | 60     | 20 | 30        | 00 | 00       | 150   |

CE: Continuous Evaluation, ESE: End Semester Exam

#### **Objective(s) of the Course:**

To help learners to

- learn about applications of Fluid Mechanics.
- understand fluid power and different major equipment which can produce power from fluid.
- learn about operation and use of different hydraulic machines like Hydraulic Crane, Hydraulic Ram, Hydraulic Lift, Hydraulic Jack, Accumulator, Intensifier etc.

|        | Section I                                                                               |       |           |  |  |  |  |
|--------|-----------------------------------------------------------------------------------------|-------|-----------|--|--|--|--|
| Module | Content                                                                                 | Hours | Weightage |  |  |  |  |
| No.    | Goment                                                                                  | nours | in %      |  |  |  |  |
|        | <b>Hydro Power Plant</b><br>Principles of Hydro Power Generation, Components and Layout |       |           |  |  |  |  |
| 1.     | of Hydro Power Plants, Classification; Advantages and                                   | 03    | 05        |  |  |  |  |
|        | Disadvantages of Hydro Power Plant.                                                     |       |           |  |  |  |  |
| 2.     | Flow Over Immerged Bodies                                                               | 03    | 05        |  |  |  |  |
|        | Bluff Bodies, Flow over Cylinder and Aerofoil                                           |       |           |  |  |  |  |
|        | Fans And Blowers                                                                        |       |           |  |  |  |  |
| 3.     | Construction details, governing equations, losses and                                   | 04    | 10        |  |  |  |  |
|        | performance curves                                                                      |       |           |  |  |  |  |
|        | Impulse Lurbines<br>Classification of Turbines Impulse and Reaction Radial and          |       |           |  |  |  |  |
|        | Axial, Tangential and Mixed flow turbines, Working Principle,                           |       |           |  |  |  |  |
| 4.     | Construction of Pelton Wheel, Expression for Work done and                              | 10    | 15        |  |  |  |  |
|        | Efficiency for Pelton Turbine, Velocity Triangle, Performance                           |       |           |  |  |  |  |
|        | characteristic curve, Unit and Specific Quantities, Governing of                        |       |           |  |  |  |  |
|        | Poaction Turbinos                                                                       |       |           |  |  |  |  |
|        | Working Principle Construction of Francis and Kaplan Turbines                           |       |           |  |  |  |  |
| 5.     | Draft Tube Theory, Cavitation, Velocity Triangle, Performance                           | 10    | 15        |  |  |  |  |
| _      | characteristic curve, Unit and Specific Quantities, Governing of                        | -     | _         |  |  |  |  |
|        | Reaction Turbines.                                                                      |       |           |  |  |  |  |

|        | Section II                                                                                                                                                                                                                                                                                 |       |           |  |  |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|--|--|--|--|--|
| Module | Content                                                                                                                                                                                                                                                                                    | Hours | Weightage |  |  |  |  |  |
| No.    | Content                                                                                                                                                                                                                                                                                    | nours | in %      |  |  |  |  |  |
| 1.     | <b>Hydraulic Pumps</b><br>Classification, Principle of Dynamic and Positive Displacement<br>Pumps, Centrifugal Pump and its Velocity Diagrams, Work Done<br>by Impeller, Various Efficiencies of Pumps, Pump Losses, NPSH,<br>Specific Speed, Characteristic Curves, Priming, Operation of | 15    | 30        |  |  |  |  |  |
|        | Single and Double acting reciprocating Pump, Volumetric<br>Efficiency; Work done and Slip, Special Purpose Pumps,<br>Cavitation, Effect of Air Vessels                                                                                                                                     |       |           |  |  |  |  |  |
| 2.     | <b>Impact of Jet</b><br>Impact of jet on different types of flat and curved plates, Force<br>exerted on Fixed and Moving Plates, Expression of Efficiency,<br>Condition for Maximum Efficiency and Value for maximum<br>efficiency.                                                        | 10    | 15        |  |  |  |  |  |
| 3.     | <b>Miscellaneous Hydraulic Systems</b><br>Construction and Working of Hydraulic Intensifier, Hydraulic<br>Accumulator, Hydraulic Jack, Hydraulic Ram, Hydraulic Crane,<br>Hydraulic Fluid Couplings and Torque Convertor                                                                   | 5     | 05        |  |  |  |  |  |

# List of Practical:

| Sr No | Name of Practical                                | Hours |
|-------|--------------------------------------------------|-------|
| 1.    | To Study about Hydro Power Plant                 | 02    |
| 2.    | Performance test on Pelton Turbine               | 04    |
| 3.    | Performance test on Francis Turbine              | 04    |
| 4.    | Performance test on Kaplan Turbine               | 04    |
| 5.    | Performance test on Centrifugal Pump             | 02    |
| 6.    | Performance test on Reciprocating Pump           | 02    |
| 7.    | Performance test on Gear Pump                    | 02    |
| 8.    | Performance Test on Hydraulic Ram                | 04    |
| 9.    | Impact of Jet on Vanes                           | 02    |
| 10.   | Performance test on Pumps in Series and Parallel | 04    |

# Text Book(s):

| Title                               | Author/s                | Publication        |  |
|-------------------------------------|-------------------------|--------------------|--|
| Textbook of Fluid Mechanics and     | P K Bancal              | Laxmi Publications |  |
| Hydraulic Machines                  | K. K. Dalisal           |                    |  |
| Introduction to Fluid Mechanics and | S. V. Som & Digwag C    | Tata McGraw Hill   |  |
| Fluid Machines                      | 5. K. SUIII & DISWAS. G | Publication        |  |

# **Reference Book(s):**

| Title                                       | Author/s    | Publication         |
|---------------------------------------------|-------------|---------------------|
| Fluid Mechanics and Fluid Power Engineering | D. S, Kumar | S K Kataria & Sons. |
| Turbines, Compressors and Fans              | S. M. Yahya | Tata McGraw Hill    |
|                                             |             | Publication         |

#### Web Material Link(s):

• <u>https://nptel.ac.in/courses/112104117/</u>

#### **Course Evaluation:**

#### Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

#### Practical:

- Continuous Evaluation consists of Performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

#### Course Outcome(s):

- understand fundamentals of hydro power plant and its operation and construction.
- analyze complete performance of Hydraulic Turbines Experimentally and Theoretically.
- understand working and construction of different Fluid Machines.
- apply the principles of Fluid Statics and Fluid Kinematics to various Fluid Machines.

#### **Department of Mechanical Engineering**

Course Code: SEME3031 Course Name: Dynamics of Machinery Prerequisite Course(s): SEME2081-Kinematics of Machinery

#### **Teaching & Examination Scheme:**

| Teaching Scheme (Hours/Week) |                 |                 |          | Exa      | aminati  | on Schei | ne (Mai | rks)  |       |     |     |    |     |       |
|------------------------------|-----------------|-----------------|----------|----------|----------|----------|---------|-------|-------|-----|-----|----|-----|-------|
| Theory Practical Tutorial    | Tutorial Cradit | Tutorial Cradit |          | eory     | Prac     | ctical   | Tut     | orial | Total |     |     |    |     |       |
| Theory                       | Flactical       | Tutorial        | Tutoriai | Tutoriai | Tutoriai |          | Credit  | CE    | ESE   | CE  | ESE | CE | ESE | TOLAT |
| 03                           | 02              | 00              | 04       | 40       | 60       | 20       | 30      | 00    | 00    | 150 |     |    |     |       |

CE: Continuous Evaluation, ESE: End Semester Exam

#### **Objective(s) of the Course:**

To help learners to

- learn about turning moment diagrams and the dynamics of reciprocating engines.
- understand balancing procedure of rotating and reciprocating masses.
- learn about forced and free vibrations.
- learn about governors and gyroscope and their applications.

|               | Section I                                                                                                                                                                                                                                                                |       |                   |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|
| Module<br>No. | Content                                                                                                                                                                                                                                                                  | Hours | Weightage<br>in % |
| 1.            | <b>Introduction</b><br>Force and Couple, Condition of Static Equilibrium, Free body<br>diagrams, Analysis of Mechanism                                                                                                                                                   | 02    | 05                |
| 2.            | <b>Dynamic Force Analysis</b><br>D'Alembert Principal, Inertia Force, Dynamic analysis of Four bar<br>Mechanism, Analysis of floating link, Method of virtual work,<br>Turning Moment diagrams, Fluctuation of energy, Flywheel                                          | 12    | 30                |
| 3.            | <b>Balancing</b><br>Need of balancing, Static balancing, Balancing of static masses in<br>same and different planes, Dynamic Balancing, Balancing of<br>reciprocating masses, Balancing of Inline, Radial and V- Engines                                                 | 09    | 15                |
|               | Section II                                                                                                                                                                                                                                                               |       |                   |
| Module<br>No. | Content                                                                                                                                                                                                                                                                  | Hours | Weightage<br>in%  |
| 1.            | <b>Vibrations – Single Degree Of Freedom</b><br>Introduction, Terminologies, Classification, Undamped and<br>damped vibration, Viscous damping, Introduction of Coulomb<br>Damping, Forced vibrations, Magnification Factor, Vibration<br>Isolation and Transmissibility | 08    | 20                |

| 2. | <b>Transverse And Torsional Vibrations</b><br>Longitudinal and transverse vibrations, Whirling of shaft with and<br>without damping, Dunkerley 's method for simply supported beams<br>Torsional Vibrations, Single; Two and Three rotor systems, Free<br>vibration of gears systems | 08 | 20 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
| 3. | Mechanism For ControlsIntroduction, Types of Governors, Sensitivity, Hunting,Isochronisms, Stability, Effort and Power of Governors, ControllingForce, Angular velocity and Acceleration, Gyroscopic couple,Gyroscopic effect on naval ships, stability of an automobile             | 06 | 10 |

#### List of Practical:

| Sr No | Name of Practical                                                  | Hours |
|-------|--------------------------------------------------------------------|-------|
| 1.    | Whirling of Shaft Apparatus                                        | 02    |
| 2.    | Balancing of Rotors                                                | 04    |
| 3.    | Governors                                                          | 04    |
| 4.    | Gyroscopes                                                         | 02    |
| 5.    | Natural frequency of longitudinal vibration of spring mass system. | 04    |
| 6.    | Analysis of Cam and plotting the Cam profile                       | 04    |
| 7.    | Undamped free vibration of equivalent spring mass system           | 02    |
| 8.    | Damped vibration of equivalent spring mass system                  | 02    |
| 9.    | BI –FILAR System                                                   | 02    |
| 10.   | TRI-FILAR System                                                   | 02    |
| 11.   | Viscous Vibration                                                  | 02    |

#### Text Book(s):

| Title              | Author/s     | Publication       |  |  |
|--------------------|--------------|-------------------|--|--|
| Theory of Machines | S S Rattan   | Tata McGraw Hill  |  |  |
| Theory of Machines | P L Ballaney | Khanna Publishers |  |  |

#### **Reference Book(s):**

| Title                             | Author/s    | Publication             |
|-----------------------------------|-------------|-------------------------|
| Theory of Machines and Mechanisms | J E Shigley | Tata McGraw Hill        |
| Theory of Machines                | V P Singh   | Dhanpatrai Publications |

#### Web Material Link(s):

• <u>https://nptel.ac.in/courses/112101096/</u>

#### **Course Evaluation:**

#### Theory:

- Continuous Evaluation consists of two tests each of 30 Marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

#### Practical:

- Continuous Evaluation consists of Performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

#### Course Outcome(s):

- apply the understanding of turning moment diagrams in various applications.
- perform static and dynamic balancing of rotary and reciprocating machines.
- analysis of free and forced vibrations of various machines.
- apply the methods of controls to various machines.

#### **Department of Mechanical Engineering**

Course Code: SEME3041 Course Name: Thermal Engineering Prerequisite Course(s): SEME2011-Engineering Thermodynamics

#### **Teaching & Examination Scheme:**

| Teaching Scheme (Hours/Week) |                    |                          |            | Exa | aminati | on Schei | ne (Mai | rks)  |       |       |
|------------------------------|--------------------|--------------------------|------------|-----|---------|----------|---------|-------|-------|-------|
| Theory Practic               | Practical Tutorial | ractical Tutorial Credit | Theory Pra |     | Prac    | ctical   | Tut     | orial | Total |       |
|                              |                    |                          | Creuit     | CE  | ESE     | CE       | ESE     | CE    | ESE   | TOLAI |
| 03                           | 00                 | 00                       | 03         | 40  | 60      | 00       | 00      | 00    | 00    | 100   |

CE: Continuous Evaluation, ESE: End Semester Exam

#### **Objective(s) of the Course:**

To help learner to

- understand about construction and operation of various compressors.
- learn about various jet propulsion engines.
- recognizing different gas turbine arrangements and differences of a real cycle.
- learn about different types of steam turbines.

| Section I |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |           |  |  |  |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|--|--|--|--|
| Module    | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hours | Weightage |  |  |  |  |
| No.       | Gontont                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nourb | in %      |  |  |  |  |
| 1.        | Compressors<br>Centrifugal Compressor – Construction and Operation, Static and<br>Total Head Properties, Velocity Diagram, Degree of Reaction,<br>Surging and Chocking, Various Losses<br>Reciprocating Compressor – Construction and Working,<br>Condition for minimum work for Multistage, Inter cooling,<br>Volumetric and Isentropic Efficiency<br>Rotary Compressor – Introduction and Classification, Root<br>Blower, Vane Type, Scroll Type, Screw type Compressors | 10    | 25        |  |  |  |  |
| 2.        | <b>Steam Nozzles</b><br>Introduction and Classification, Steam Velocity, Discharge<br>through Nozzles and Condition for Maximum Discharge, Critical<br>Pressure Ratio and its physical significance, Effect of Friction,<br>Nozzle Efficiency, General Relationship between area, velocity<br>and pressure, Supersaturated Flow                                                                                                                                            | 08    | 20        |  |  |  |  |
| 3.        | <b>Jet Propulsion</b><br>Turbojet Engine and its Thrust, Thrust Power, Propulsive and<br>Thermal Efficiency, Turboprop, Ramjet and Pulsejet Engines,<br>Rocket Engine                                                                                                                                                                                                                                                                                                      | 05    | 05        |  |  |  |  |

| Section II    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                   |  |  |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|--|--|--|--|
| Module<br>No. | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hours | Weightage<br>in % |  |  |  |  |
| 1.            | <b>Steam Turbines</b><br>Principal and Operation, Classification, Compounding<br>Impulse Turbines – Velocity Diagram, Determination of Work,<br>Power and Efficiency, Condition for Maximum Efficiency<br>Reaction Turbines – Velocity Diagram, Degree of Reaction, Parson<br>Turbine, Work, Power and Efficiency, Blade Height, Condition for<br>Maximum Efficiency for Parson Turbine, Reheat Factor<br>Governing of Steam Turbines – Throttle, Nozzle and Bypass<br>Governing, Regenerative feed heating, Reheating of steam and<br>Binary vapour power cycle. | 11    | 25                |  |  |  |  |
| 2.            | <b>Gas Turbine</b><br>Introduction, Merits and Demerits, Classification, Open and<br>Closed Cycle, Actual Brayton Cycle, Compressor and Turbine<br>Efficiency, Optimum Pressure ratio for Maximum Efficiency, Work<br>Ratio, Methods to Improve Efficiency of Gas Turbine – Reheating,<br>Regeneration and Inter cooling, Combine Steam and Gas Turbine<br>Power Plant, Requirements of combustion chamber and Types of<br>Combustion Chamber                                                                                                                     | 11    | 25                |  |  |  |  |

#### Text Book(s):

| Title               | Author/s     | Publication       |
|---------------------|--------------|-------------------|
| Thermal Engineering | P L Ballaney | Khanna Publishers |
| Thermal Engineering | S Domkundwar | Dhanpatrai & Co.  |

#### **Reference Book(s):**

| Title                                | Author/s           | Publication                      |
|--------------------------------------|--------------------|----------------------------------|
| Thermal Engineering                  | R K Rajput         | Laxmi Publication                |
| Thermodynamics & Thermal Engineering | J Selwin Rajadurai | New Age Publishers               |
| Turbines, Compressors and Fans       | S M Yahya          | Tata McGraw Hill<br>Publications |

#### **Course Evaluation:**

#### Theory:

- Continuous Evaluation consists of two tests each of 30 Marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

#### Course Outcome(s):

- elaborate basic concepts, construction and operation of various compressors.
- do basic calculation involved in gas turbines.
- do basic calculations applied steam nozzles.
- do analysis and basic calculation involve in steam turbines.

#### **Department of Mechanical Engineering**

Course Code: SEME3051 Course Name: Production Technology Prerequisite Course(s): SEME2050 - Forming & Machining Processes

#### **Teaching & Examination Scheme:**

| Teaching Scheme (Hours/Week) |           |          | Exa          | aminati | on Schei | ne (Mai | rks)   |     |       |       |
|------------------------------|-----------|----------|--------------|---------|----------|---------|--------|-----|-------|-------|
| Theory                       | Dractical | Tutorial | orial Cradit |         | eory     | Prac    | ctical | Tut | orial | Total |
| Theory                       | FIACULAI  | TULUTIAI | Crean        | CE      | ESE      | CE      | ESE    | CE  | ESE   | TOLAI |
| 03                           | 02        | 00       | 04           | 40      | 60       | 20      | 30     | 00  | 00    | 150   |

CE: Continuous Evaluation, ESE: End Semester Exam

#### **Objective(s)** of the Course:

To help learners to

- introduce the students to the theory and mechanism of various cutting processes.
- grasp distinctive knowledge of gear forming and its generating method
- understand the usefulness of Jig & Fixtures, Presses and Press work.
- introduce students with nontraditional manufacturing techniques for shaping newer materials.

| Section I     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                   |  |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|--|--|--|
| Module<br>No. | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hours | Weightage<br>in % |  |  |  |
| 1.            | <b>Theory of Metal Cutting</b><br>Cutting Tool Material, Types of cutting tools, Tool geometry and<br>Force analysis. Theory of metal cutting: Orthogonal and oblique<br>cutting, Mechanics of chip formation and<br>types of chips produced, Chip thickness ratio, Shear plane angle<br>and its effect, Forces, Coefficient of friction, Shear strain, Power<br>in machining. Merchant circle diagram and its assumptions and<br>use. Chip breakers, Tool Dynamometers, Tool wears and<br>methods of tool failure, Tool life. Cutting fluids and their<br>properties, Economics of machining, Machinability and its<br>evaluation. | 14    | 30                |  |  |  |
| 2.            | <b>Thermal Aspects in Machining</b><br>Sources of heat generation in machining and its effects,<br>Temperature Measurement techniques in machining, types of<br>cutting fluids, Functions of cutting fluid, Characteristics of<br>cutting fluid, Application of cutting fluids, Economics of Metal<br>Cutting Operations.                                                                                                                                                                                                                                                                                                           | 05    | 12                |  |  |  |

| 3.            | Gear and Thread Manufacturing<br>Different types of Threads manufacturing methods, and tools<br>involved, Different gear forming and generating methods with<br>their special features, Gears finishing processes.                                                                                                                                                                                                                    |       | 08                |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|
|               | Section II                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                   |
| Module<br>No. | Content                                                                                                                                                                                                                                                                                                                                                                                                                               | Hours | Weightage<br>in % |
| 1.            | <b>Press Tool</b><br>Classification of presses, Classification of dies, cutting<br>actions in dies, clearance, cutting forces, Methods of reducing<br>cutting forces, Minimum Diameter of Piercing Center of<br>Pressure, Blanking, Piercing, Drawing, Bending and Progressive<br>Die design, scrap reduction, strip layout.                                                                                                          | 08    | 18                |
| 2.            | <b>Jigs and Fixtures</b><br>Definition, Differences between Jigs and Fixtures, Its usefulness<br>in mass production, design principles, 3-2-1 location principle<br>and its application to short and long cylinders, types of locators,<br>concept of work piece control, geo metric control, dimensional<br>control and mechanical control, Clamps, jig bushes, Jigs and<br>fixtures for various machining operations.               | 06    | 14                |
| 3.            | <b>Modern Machining Processes</b><br>Purpose, Need and Classification, Aspects considered in<br>selection of a process. Principle, construction, working of the<br>following processes: Ultrasonic machining, Abrasive jet<br>machining, Water jet machining, Chemical Machining, Electro<br>Chemical Machining and Grinding, Electro discharge Machining,<br>Plasma arc machining, Laser beam machining, Electron beam<br>machining. | 08    | 18                |

# List of Practical:

| Sr No | Name of Practical                                                                   | Hours |  |  |  |
|-------|-------------------------------------------------------------------------------------|-------|--|--|--|
| 1.    | Study of various types of cutting tools and measurement of tool geometry            | 04    |  |  |  |
| 2.    | To Understand the Effect of Chosen Parameters on the type of chip produced          | 04    |  |  |  |
| 3.    | Determination of chip-thickness ratio and shear plane Angle During Machining        | 04    |  |  |  |
| 4     | Measurement of cutting forces in turning using Lathe Tool Dynamometer under         | 04    |  |  |  |
| т.    | various cutting conditions                                                          | 04    |  |  |  |
| 5.    | To study the Temperature Measurement on chip tool interface                         | 04    |  |  |  |
| 6.    | To study and understand the effect of a suitable cutting lubricant                  | 04    |  |  |  |
| 7.    | Design a Jig and Fixture for given component                                        | 04    |  |  |  |
| 0     | To study different press and design of punch and die, also exercise on strip layout | 02    |  |  |  |
| υ.    | and center of pressure                                                              | 02    |  |  |  |

#### Text Book(s):

| Title                                 | Author/s   | Publication         |
|---------------------------------------|------------|---------------------|
| A Text Book of Production Engineering | Sharma P C | S. Chand Publishers |
| Production Technology                 | R K Jain   | Khanna Publication  |

#### **Reference Book(s):**

| Title                                 | Author/s    | Publication             |
|---------------------------------------|-------------|-------------------------|
| Production Technology                 | НМТ         | Tata McGraw Hill Pub    |
| Metal Cutting principles              | M C Shaw    | Oxford University press |
| Fundamentals of machining and machine | Boothroyd   | CRC publication         |
| tools                                 |             |                         |
| Workshop Technology Vol. II           | Raghuvanshi | Dhanpat rai Pub         |

#### Web Material Link(s):

 http://nptel.iitm.ac.in/courses/Webcoursecontents/IIT%20Kharagpur/Manuf%20Proc%20II/ New index1.html

#### **Course Evaluation:**

#### Theory:

- Continuous Evaluation consists of two tests each of 30 Marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

#### **Practical/Tutorial:**

- Continuous Evaluation consists of Performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

# Course Outcome(s):

- Understand the theory behind cutting of materials for shaping them into desired forms.
- Analyze forces involved during machining process.
- Understand motions in machine tools and analyze various elements of machine tools.
- Interpret modern machining processes for material removal application
- Understand gear and thread manufacturing methods
- Understand work holding method for production activities

#### **Centre for Skill Enhancement & Professional Development**

Course Code: SEPD3010 Course Name: Professional Communication & Soft Skills Prerequisite Course(s): SEPD1020: Communication Skills

#### **Teaching & Examination Scheme:**

| Teaching Scheme (Hours/Week) |           |          |              | Exa | aminati | on Schei | ne (Mai | rks) |       |       |
|------------------------------|-----------|----------|--------------|-----|---------|----------|---------|------|-------|-------|
| Theory                       | Dractical | Tutorial | orial Cradit |     | eory    | Prac     | ctical  | Tut  | orial | Total |
| Theory                       | Flactical | Tutoriai | Creun        | CE  | ESE     | CE       | ESE     | CE   | ESE   | TOtal |
| 01                           | 02        | 00       | 02           | 00  | 00      | 50       | 50      | 00   | 00    | 100   |

CE: Continuous Evaluation, ESE: End Semester Exam

#### **Objective(s) of the Course:**

To help learners to

- understand multifaceted Professional Speaking Process.
- learn the writing etiquettes for professional purposes.
- gain basic knowledge, skills and the right attitude to succeed in future professional working environment.
- develop confidence, enhance their professional communication ability in civilized, harmonized manner.
- sharpen communication skills with reference to organizational structure.
- expose themselves to the modern modes of communication.

| Section I |                                                                           |       |           |  |  |  |
|-----------|---------------------------------------------------------------------------|-------|-----------|--|--|--|
| Modulo    | Contont                                                                   | Uoura | Weightage |  |  |  |
| Module    | content                                                                   | nours | in %      |  |  |  |
|           | Self-Management & Career Building                                         |       |           |  |  |  |
|           | <ul> <li>Self-Evaluation, discipline and criticism</li> </ul>             |       |           |  |  |  |
| 1         | <ul> <li>SWOT analysis to identify personal strength/ weakness</li> </ul> | 01    | 7         |  |  |  |
| 1.        | Planning & Goal setting                                                   | 01    | ,         |  |  |  |
|           | MBTI test for self-analysis                                               |       |           |  |  |  |
|           | Profiling on Online Platforms                                             |       |           |  |  |  |
|           | Interpersonal Organizational Communication                                |       |           |  |  |  |
|           | Interpersonal Behavioral Skills                                           |       |           |  |  |  |
|           | <ul> <li>Understanding empathy and comprehend other's</li> </ul>          |       |           |  |  |  |
| 2.        | opinions/ points of views, Managing Positive and negative                 | 04    | 25        |  |  |  |
|           | emotions                                                                  |       |           |  |  |  |
|           | <ul> <li>Healthy and Unhealthy expression of emotions.</li> </ul>         |       |           |  |  |  |
|           | <ul> <li>Mutuality, Trust, Emotional Bonding and handling</li> </ul>      |       |           |  |  |  |
|           | situation in interpersonal relationship                                   |       |           |  |  |  |
|           | Professional Communication (Speaking) - I                                 |       |           |  |  |  |
| 3         | <ul> <li>Professional Communication and Rhetorics</li> </ul>              | 03    | 18        |  |  |  |
| 5.        | Art of Telephonic Conversation                                            | 05    | 10        |  |  |  |
|           | Public Speaking                                                           |       |           |  |  |  |

|        | Section II                                                 |       |           |
|--------|------------------------------------------------------------|-------|-----------|
| Module | Contont                                                    |       | Weightage |
| Mouule | Content                                                    | nours | in %      |
|        | Professional Communication (Speaking) – II                 |       |           |
|        | • Group Discussion (Concept, importance, Methods, Dos and  |       |           |
| 1.     | Don'ts, Paralinguistic and Nonverbal Etiquettes)           | 03    | 20        |
|        | • Personal Interview (Concept, Importance, Methods, Dos    |       |           |
|        | and Don'ts, Type, Paralinguistic and Nonverbal Etiquettes) |       |           |
|        | Professional Communication (Writing)                       |       |           |
|        | Cover Letter and Resume Building                           |       |           |
| 2      | • E mail writing                                           | 0.4   | 20        |
| Ζ.     | Report Building                                            | 04    | 30        |
|        | • Technical/ Academic Writing (Reference/ citation/        |       |           |
|        | plagiarism)                                                |       |           |

#### List of Practical:

| Sr. No | Name of Practical                          | Hours |
|--------|--------------------------------------------|-------|
| 1.     | SWOT analysis & Profiling                  | 04    |
| 2.     | MBTI Test                                  | 02    |
| 3.     | Interpersonal Organizational Communication | 02    |
| 4.     | Group Discussion                           | 04    |
| 5.     | Personal Interview                         | 04    |
| 6.     | Cover Letter and Resume                    | 06    |
| 7.     | E mail and Report Writing                  | 04    |
| 8.     | Technical Academic Writing                 | 04    |

#### **Reference Book(s):**

| Title                              | Author/s                  | Publication                  |
|------------------------------------|---------------------------|------------------------------|
| Professional Communication         | Sheekha Shukla            | 2010, WordPress              |
| Professional Communication Skills  | Rajesh Kariya             | Paradise Publication, Jaipur |
| Soft Skills and Professional       | Petes S. J., Francis.     | Tata McGraw-Hill             |
| Communication                      |                           | Education, 2011              |
| Effective Communication and Soft   | Nitin Bhatnagar           | Pearson Education            |
| Skills                             |                           | India                        |
| Behavioural Science: Achieving     | Dr. Abha Singh            | John Wiley & Sons, 2012      |
| Behavioural Excellence for Success |                           |                              |
| The Hard Truth about Soft Skills   | Klaus, Peggy, Jane Rohman | London: Harper Collins       |
|                                    | & Molly Hamaker           |                              |

# **Course Evaluation:**

#### Practical

- Continuous Evaluation consists of performance of Practical to be evaluated out of 10 marks for each practical and average of the same will be converted to 30 marks.
- Internal Viva consists of 20 marks.
- Practical performance/quiz/drawing/test/submission of 25 marks during End Semester Exam.
- Viva/Oral performance of 25 marks during End Semester Exam.

#### **Course Outcome(s)**:

- understand the importance self-analysis for career building.
- learn tactics of communication in professional/ organizational ambience.
- master the art of conversation and public speaking.
- expose themselves for placement processes.
- develop writing etiquettes pertaining to placement and organizational context.

#### **Department of Mechanical Engineering**

Course Code: SEME3910 Course Name: Summer Training Prerequisite Course(s): --

#### **Teaching & Examination Scheme:**

| Teaching Scheme (Hours/Week) |        |           |          | Ex     | aminati | on Scher | ne (Mai | rks)   |     |       |       |
|------------------------------|--------|-----------|----------|--------|---------|----------|---------|--------|-----|-------|-------|
|                              | Theory | Practical | Tutorial | Cradit | The     | eory     | Prac    | ctical | Tut | orial | Total |
|                              | Theory | Flactical | Tutoriai | Creuit | CE      | ESE      | CE      | ESE    | CE  | ESE   | TOLAI |
|                              | 00     | 00        | 00       | 02     | 00      | 00       | 100     | 00     | 00  | 00    | 100   |

CE: Continuous Evaluation, ESE: End Semester Exam

#### **Objective(s) of the Course:**

To help learners to

- have first-hand experience the real time situations in industrial scenario.
- get familiar with engineering applications in industrial spectrum
- learn to adapt themselves in professional scenario

#### **Outline of the Course:**

| Sr. No | Content                        |
|--------|--------------------------------|
| 1.     | Selection of Companies         |
| 2.     | Company Information collection |
| 3.     | Report Writing                 |
| 4.     | Presentation & Question-Answer |

#### **Course Evaluation:**

| Sr. No. | Evaluation criteria                          | Marks |
|---------|----------------------------------------------|-------|
| 1       | Actual work carried & Report Submission      | 50    |
| 2       | Final Presentation & Question-Answer session | 50    |
|         | Grand Total:                                 | 100   |

#### Course Outcome(s):

- apply their theoretical knowledge into reality.
- learn to adapt the workplace situations when they will be recruited.
- be prepared for the real-world situations in their future.

#### **Report Writing Guidelines**

#### A. Report Format:

1. Title Page (to be provided by the respective supervisor)

The title page of the project shall give the following information in the order listed:

- Full title of the project as approved by the Mentor;
- The full name of the student/Group of students with enrollment number;
- The qualification for which the project is submitted;
- The name of the institution to which the project is submitted;
- The month and year of submission.
- Project Certification Form
   [The form should be duly filled signed by the supervisors.]
- 3. Acknowledgements [All persons (e.g. supervisor, technician, friends, and relatives) and organization/authorities who/which have helped in the preparation of the report shall be acknowledged.]
- 4. Table of Contents/Index with page numbering
- 5. List of Tables, Figures, Schemes
- 6. Summary/abstract of the report.
- 7. Introduction/Objectives of the identified problem
- 8. Data Analysis and Finding of Solution
- 9. Application of the identified solution
- 10. Future Scope of enhancement of the Project and Conclusion
- 11. "Learning during Project Work", i.e. "Experience of Journey during Project Duration"
- 12. References(must)
- 13. Bibliography
- 14. Annexures (if any)

#### **B. Guideline for Report Formatting:**

- Use A4 size page with 1" margin all sides
- Header should include Project title and footer should contain page number and enrollment numbers
- Chapter Name should be of Cambria font, 20 points, Bold
- Main Heading should be of Cambria font, 14 points, Bold
- Sub Heading should be of Cambria font, 12 points, Bold
- Sub Heading of sub heading should be of Cambria font, 12 points, Bold, Italic
- Paragraph should be of Cambria font, 12 points, no margin at the start of the paragraph
- Line spacing for all content 1.15, before 0, after 0
- No chapter number for references
- Before chapter 1, give page numbers in roman letter

#### **Department of Mechanical Engineering**

Course Code: SEME3060 Course Name: Design of Basic Machine Elements Pre requisite Course: --

#### **Teaching & Examination Scheme**:

| Teaching Scheme (Hours/Week) |           |          |        | Exa | aminati | on Schei | ne (Mai | rks) |       |       |
|------------------------------|-----------|----------|--------|-----|---------|----------|---------|------|-------|-------|
| Theory                       | Dractical | Tutorial | Cradit | The | eory    | Prac     | ctical  | Tut  | orial | Total |
| Theory                       | Flattical | Tutoriai | Creuit | CE  | ESE     | CE       | ESE     | CE   | ESE   | TOLAI |
| 04                           | 00        | 01       | 05     | 40  | 60      | 00       | 00      | 50   | 00    | 150   |

CE: Continuous Evaluation, ESE: End Semester Exam

#### **Objective(s) of the Course:**

To help learners to

- understand design consideration and material selection for particular applications.
- learn design methodology/procedure for machine elements.
- Understand standards of materials designation and machine elements.

|               | Section I                                                                                                                                                                                                                                                                |       |                   |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|
| Module<br>No. | Content                                                                                                                                                                                                                                                                  | Hours | Weightage<br>in % |
| 1.            | <b>Introduction</b><br>Process of Design, Framework of Design, Designing Methods,<br>Concurrent Engineering                                                                                                                                                              | 06    | 10                |
| 2.            | <b>Design Analysis</b><br>Types of Loads, Types of Stresses, Types of Failures, Factor of<br>Safety, Theory of failure, Fatigue failure analysis, Soderberg,<br>Gerber and Goodman Criteria, Estimation of life of<br>components, Introduction to creep and wear failure | 10    | 15                |
| 3.            | <b>Material Selection</b><br>Selection of material, Factors affecting material selection,<br>Ferrous and Non Ferrous metals and alloys, Plastics, BIS<br>designation system for steels                                                                                   | 06    | 10                |
| 4.            | <b>Design of Springs</b><br>Types, Terminologies and Types of ends in helical springs,<br>Stress and Deflection Equations, Correction Factors, Design of<br>helical spring against static and fluctuating loads, Multileaf<br>spring : Terminologies, Nipping and Design | 08    | 15                |

| Section II    |                                                                                                                                                                                                                                              |       |                   |  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|--|
| Module<br>No. | Content                                                                                                                                                                                                                                      | Hours | Weightage<br>In % |  |
| 1.            | <b>Design of Shafts and Keys</b><br>Types of Shafts, ASME code for shaft design, Design of shaft,                                                                                                                                            | 10    | 15                |  |
|               | Types of Keys, Design of Keys                                                                                                                                                                                                                |       |                   |  |
| 2.            | <b>Design of Screw And Threaded Fastness</b><br>Types of threads, Terminologies and Design of Power Screw,<br>Design of Screw and Nut, Design of Screw Jack, Types of Screw<br>Fastening, Bolt of uniform strength, ISO Metric screw threads | 08    | 15                |  |
| 3.            | <b>Design of Joints</b><br>Design of Cotter and Knuckle Joints, Strength of welded joints,<br>Strength of riveted joints, Efficiency of Joints                                                                                               | 08    | 10                |  |
| 4.            | <b>Belt Drives and Brakes</b><br>Brakes, Energy Equations, Block Brake with Short and Long<br>Shoe, Band and Disc Brake, Selection of Flat belts from<br>manufacturer 's catalogue, Selection of V-Belts                                     | 04    | 10                |  |

#### List of Tutorial:

| Sr No | Name of Tutorial                                      | Hours |
|-------|-------------------------------------------------------|-------|
| 1.    | Design consideration and Material selection           | 01    |
| 2.    | Design Analysis against static and fluctuating loads. | 01    |
| 3.    | Design of Cotter Joints                               | 01    |
| 4.    | Design of Knuckle Joints                              | 01    |
| 5.    | Design of Helical Springs                             | 02    |
| 6.    | Design of Multileaf Springs                           | 02    |
| 7.    | Design of Power Screw                                 | 01    |
| 8.    | Design of Screw Jack                                  | 02    |
| 9.    | Design of Shafts                                      | 02    |
| 10.   | Design of Keys                                        | 01    |
| 11.   | Design of Belt Drives                                 | 01    |

# Text Book(s):

| Title                         | Author/s       | Publication          |
|-------------------------------|----------------|----------------------|
| Design of Machine Elements    | V B Bhandari   | McGraw Hill Eduction |
| Mechanical Engineering Design | Joseph Shigley | McGraw Hill Eduction |

# **Reference Book(s):**

| Title                                    | Author/s    | Publication               |
|------------------------------------------|-------------|---------------------------|
| Design Data Book                         |             | PSG College of Technology |
| Fundamental of Machine Components Design | R C Junival | John Wiley Publication    |

#### **Course Evaluation:**

Theory:

- Continuous Evaluation consists of two tests each of 30 Marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

#### Practical:

- Continuous Evaluation consists of Performance of Tutorial which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

#### Course Outcome(s):

- carry out preliminary material selection for particular applications.
- able to design various machine parts like joints, screw and threaded fasteners, shaft, keys, power screw and screw joints and springs.
- apply design considerations in design of various machine elements.

#### **Department of Mechanical Engineering**

Course Code: SEME3071

Course Name: Internal Combustion Engine & Refrigeration Air Conditioning Prerequisite Course(s): SEME1030-Elements of Mechanical Engineering

#### **Teaching & Examination Scheme:**

| Teaching Scheme (Hours/Week) |            |          |        |     | Exa  | aminati | on Schei | ne (Mai | rks)  |       |
|------------------------------|------------|----------|--------|-----|------|---------|----------|---------|-------|-------|
| Theory                       | Dre stigal | Tutorial | Credit | The | eory | Prac    | ctical   | Tut     | orial | Total |
| Theory                       | Practical  | Tutorial | Creat  | CE  | ESE  | CE      | ESE      | CE      | ESE   | Total |
| 04                           | 02         | 00       | 05     | 40  | 60   | 20      | 30       | 00      | 00    | 150   |

CE: Continuous Evaluation, ESE: End Semester Exam

#### **Objective(s) of the Course:**

To help learners to

- identify functions of various components of Internal Combustion Engine and related performance parameters.
- interpret the differences between Air standard, Fuel air and Actual cycle.
- understand the rating of fuels, Calorific value and their findings.
- explore combustion processes of S.I and C.I engine in detail.
- clarify the concepts of refrigeration and air-conditioning
- explore the different types of refrigeration and air conditioning methods
- understand the difference between VAR and VCR System.
- Selection of refrigerant under different condition with application and properties.

| Section I |                                                                                                                                     |                          |           |                |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------|----------------|--|--|
| Module.   | Contont                                                                                                                             | Uouro                    | Weightage |                |  |  |
| No.       | content                                                                                                                             | nours                    | in %      |                |  |  |
|           | Analysis of Fuel Air Cycles and Actual Air Cycles                                                                                   |                          |           |                |  |  |
| 1.        | Air standard cycles with assumptions, Fuel air cycles with                                                                          |                          |           |                |  |  |
|           | assumptions, Characteristics of fuel-air mixtures, Variation of                                                                     | 04                       | 00        |                |  |  |
|           | specific heat, Dissociation, Comparison of Air Standard and Fuel<br>air cycles, Comparison of air standard and actual cycles, Valve |                          | 00        |                |  |  |
|           |                                                                                                                                     |                          |           | Timing diagram |  |  |
|           |                                                                                                                                     | Combustion in I.C Engine |           |                |  |  |
|           | Combustion equations, stoichiometric air fuel ratio, rich and lean                                                                  |                          |           |                |  |  |
|           | mixture and its application, adiabatic flame temperature Calorific                                                                  |                          |           |                |  |  |
| 2.        | value and its findings, Combustion in S.I. Engine and C.I. Engines                                                                  | 06                       | 15        |                |  |  |
|           | Stages of combustion in S.I. Engine and C.I engine, Detonation and                                                                  |                          |           |                |  |  |
|           | its Control of detonation, Delay period, Factor s influencing delay                                                                 |                          |           |                |  |  |
|           | period, Diesel knock, Control of diesel knock.                                                                                      |                          |           |                |  |  |

|         | Engine Emissions it's Control & Recent Development in               |       |           |
|---------|---------------------------------------------------------------------|-------|-----------|
|         | engine                                                              |       |           |
|         | Pollutants and their ill effects. Sources and types formation of    |       |           |
| 3.      | NOx Particulate emissions Catalytic converters Alternate fuels      | 05    | 10        |
|         | like Alcohol Hydrogen Natural Cas IPC CNC Properties                | 05    | 10        |
|         | Suitability and IPC&CNC based engines Engine Modifications          |       |           |
|         | Marita and Demorita as fuels. Electric /Hybrid Vehicles, fuel cell  |       |           |
|         | Ignition Fuel Supply Lubrication and Cooling System                 |       |           |
|         | Battery and Magnete ignition system and its comparison firing       |       |           |
|         | Battery and Magneto Ignition system and its comparison, in ing      |       |           |
|         | order, Lubrication of engine components, Lubrication system,        |       |           |
| 4.      | wet sump and dry sump, Types of cooling systems, liquid and air     | 05    | 08        |
|         | cooled, comparison of liquid and air-cooled systems, Simple         |       |           |
|         | carburetor, MPFI in S.I. Engine, Requirements of Diesel Injection   |       |           |
|         | System, Types of injection systems, Fuel pumps, types of nozzles,   |       |           |
|         | spray formation.                                                    |       |           |
| _       | Supercharging                                                       | 0.2   | 00        |
| 5.      | supercharging, Effect of supercharging, methods of                  | 03    | 09        |
|         | supercharging, limitations of supercharging, turbocharging.         |       |           |
|         | Section II                                                          | [     |           |
| Module. | Content                                                             | Hours | Weightage |
| No.     |                                                                     |       | in %      |
|         | Basics of refrigeration                                             |       |           |
|         | Methods of producing cooling, ton of refrigeration, coefficient of  |       |           |
| 1.      | performance, types and application of refrigeration and air         | 04    | 07        |
|         | condensing systems. Classification of refrigerant, nomenclature,    | • -   | •         |
|         | desirable properties of refrigerant, secondary refrigerants,        |       |           |
|         | future industrial refrigerants                                      |       |           |
|         | Vapour Compression system                                           |       |           |
|         | Simple system on P-h and T-s diagrams, analysis of the simple       |       |           |
|         | cycle, factors affecting the performance of the cycle, actual cycle |       |           |
|         | Compound Compression System                                         |       |           |
|         | Compound compression with intercooler, flash gas removal and        |       |           |
|         | flash intercooler, multiple evaporators with back pressure valves   |       |           |
| 2       | and with multiple expansion valves without flash inter cooling,     | 08    | 20        |
| 2.      | analysis of two evaporators with flash intercooler and individual   | 00    | 20        |
|         | expansion valve and multiple expansion valve, cascade               |       |           |
|         | refrigeration system                                                |       |           |
|         | Absorption refrigeration system                                     |       |           |
|         | Desirable characteristics of refrigerant, selection of pair,        |       |           |
|         | practical H2O -NH3 cycle, LiBr – H2O system and its working,        |       |           |
|         | Electrolux refrigeration system                                     |       |           |
|         | Psychrometry                                                        |       |           |
|         | Dalton's law of partial pressure, Properties of moist air,          |       |           |
| 3.      | temperature and humidity measuring instruments,                     | 06    | 15        |
|         | psychrometric chart, psychrometric processes such as sensible       |       |           |
|         | heating and cooling, heating and humidification cooling and         |       |           |

|    | dehumidification, chemical dehumidification, adiabatic          |    |    |
|----|-----------------------------------------------------------------|----|----|
|    | saturation                                                      |    |    |
|    | Human comfort                                                   |    |    |
|    | Selection of inside design conditions, thermal comfort, heat    |    |    |
|    | balance equation for a human being, factors affecting thermal   |    |    |
|    | comfort, Effective temperature, comfort chart and factors       |    |    |
|    | governing effective temperature, selection of outside design    |    |    |
|    | conditions                                                      |    |    |
|    | Air-conditioning systems                                        |    |    |
|    | Classification, system components, all air; all water; and air- |    |    |
| 4. | water systems, room air conditioners, packaged air conditioning | 04 | 08 |
|    | plant, central air conditioning systems, split air conditioning |    |    |
|    | systems                                                         |    |    |

#### List of Practical:

| Sr. No. | Name of Practical                                                                  | Hours |
|---------|------------------------------------------------------------------------------------|-------|
| 1       | Identification of Calorific value of different liquid fuels using Bomb calorimeter | 04    |
| 1.      | and gases fuels using Junkers gas calorimeter.                                     | 04    |
| 2.      | Performance of Morse Test with 4 cylinder 4-stroke Petrol Engine.                  | 02    |
| 3.      | Performance of 4-stroke diesel engine and Heat balance sheet.                      | 04    |
| 4.      | Identification of Exhaust gases using 5 gas analyzer.                              | 02    |
| 5.      | Study of different measurement and testing methods of I.C engines                  | 04    |
| 6.      | To understand different components of VCR system and to determine its COP          | 02    |
| 7.      | To determine COP and apparatus dew point of an air conditioning test rig           | 04    |
| 0       | Study of domestic refrigerator and to determine % running time at different        | 02    |
| 0.      | thermostat settings.                                                               | 02    |
| 9.      | To understand working of Electrolux refrigerator and to determine its COP.         | 04    |
| 10.     | To determine COP and apparatus dew point of an air conditioning test rig.          | 02    |

# Text Book (s):

| Title                              | Author/s    | Publication |
|------------------------------------|-------------|-------------|
| Internal Combustion Engines        | V. Ganeshan | McGraw Hill |
| Refrigeration and Air Conditioning | R.S. Khurmi | S. Chand    |

# **Reference Book(s):**

| Title                              |                      |            | Author/s                      | Public            | ation         |
|------------------------------------|----------------------|------------|-------------------------------|-------------------|---------------|
| Internal Combustion Engines        |                      |            | R. B. Mathur and R. P. Sharma | Dhanpat Rai & Son |               |
| Internal                           | Combustion           | Engine     | Heywood J. B                  | McGra             | w Hill        |
| Fundamenta                         | ls                   |            |                               |                   |               |
| Internal Com                       | bustion Engines      |            | Shyam K. Agrawal              | New               | Age           |
|                                    |                      |            | International Ltd.            |                   |               |
| Alternative F                      | uels Guide Book      |            | Richard. L. Bechfold          | SAE               | International |
|                                    |                      |            |                               | Warre             | ndale         |
| Refrigeration and Air conditioning |                      | C.P. Arora | McGraw Hill                   |                   |               |
| Refrigeration                      | and Air conditioning | Г<br>)     | P.S. Desai                    | Khann             | a Publishers  |

#### Web Material Link(s):

- https://nptel.ac.in/courses/112104033/ (Introduction to I.C Engines and Air Pollution)
- <u>https://nptel.ac.in/courses/112103262/</u> (I.C engine and Gas Turbines)
- <u>https://www.nptel.ac.in/courses/112105128/</u> (Refrigeration and air conditioning)

#### **Course Evaluation:**

Theory:

- Continuous Evaluation consists of two tests each of 30 Marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

#### Practical:

- Performance of Practical consists of 10 marks.
- Internal Viva consists of 10 marks.
- Viva/Oral/Practical Performance of 30 marks during End Semester Exam.

#### Course Outcome(s):

- measure and test the different performance parameters of I. C engine.
- define the role and importance of fuel supply system for various engine.
- understand the concepts & types of ignition and governing systems used for I.C Engine.
- clarity of concepts of air-condition and idea about different conditioning systems.
- use of refrigeration in industrial application with types.
- knowledge of properties of different refrigerants and selection of refrigerant.

#### **Department of Mechanical Engineering**

Course Code: SEME3080 Course Name: Computer Aided Design and Manufacturing Prerequisite Course(s): --

#### **Teaching & Examination Scheme:**

| Teaching Scheme (Hours/Week) |           |          |          |          | Exa  | aminati | on Schei | ne (Mai | rks)  |       |     |    |     |       |
|------------------------------|-----------|----------|----------|----------|------|---------|----------|---------|-------|-------|-----|----|-----|-------|
| Theory                       | Dractical | Tutorial | Cradit   | The      | eory | Prac    | ctical   | Tut     | orial | Total |     |    |     |       |
| Theory                       | Flattical | Tutorial | TULUTIAI | Tutorial |      |         | Crean    | CE      | ESE   | CE    | ESE | CE | ESE | TOLAI |
| 04                           | 02        | 00       | 05       | 40       | 60   | 20      | 30       | 00      | 00    | 150   |     |    |     |       |

CE: Continuous Evaluation, ESE: End Semester Exam

#### **Objective(s) of the Course:**

To help learners to

- understand the basic aspects of CAD/CAM.
- gain exposure over the concepts of computer graphics.
- learn geometric modelling and issues in manufacturing.
- develop strong skill of writing CNC programs.
- educate students to understand different advances in manufacturing system like: GT, FMS and RP.

| Section I |                                                                 |       |           |  |  |  |  |
|-----------|-----------------------------------------------------------------|-------|-----------|--|--|--|--|
| Module    | Contont                                                         | Hours | Weightage |  |  |  |  |
| No.       | content                                                         | nours | in %      |  |  |  |  |
|           | Fundamental of CAD                                              |       |           |  |  |  |  |
| 1.        | Application of computer for design, Product Cycle and CAD-CAM,  |       |           |  |  |  |  |
|           | Graphics input-output devices, Concept of Coordinate Systems:   | 04    | 05        |  |  |  |  |
|           | Working Coordinate System, Model Coordinate System, Screen      | 04    | 05        |  |  |  |  |
|           | Coordinate System, Graphics exchange standards - Neutral file   |       |           |  |  |  |  |
|           | formats – IGES, STEP                                            |       |           |  |  |  |  |
|           | Principles of computer Graphics                                 |       |           |  |  |  |  |
|           | Introduction to Computer graphics, Scan conversions and         |       |           |  |  |  |  |
| 2.        | Algorithm for generation - DDA, Bresenham's algorithms., 2D and | 08    | 15        |  |  |  |  |
|           | 3D Transformation - Translation, Scaling, Reflection, Rotation, |       |           |  |  |  |  |
|           | Shearing                                                        |       |           |  |  |  |  |
|           | Geometric Modeling                                              |       |           |  |  |  |  |
|           | Representation of curves and surfaces, Geometric modeling       |       |           |  |  |  |  |
| 3.        | techniques, Wireframe modeling, Surface Modeling and Solid      | 00    | 15        |  |  |  |  |
|           | Modeling, Feature based Parametric and Variation modeling.      | 08    | 15        |  |  |  |  |
|           |                                                                 |       |           |  |  |  |  |
|           |                                                                 |       |           |  |  |  |  |

| 4.            | <b>Finite Element Analysis</b><br>Design and analysis and Historical background, Stresses and<br>equilibrium, Boundary conditions, Strain-Displacement<br>relations, Plane stress and plane strain cases, Concept of Raleigh-<br>Ritz and Galerkin's methods, Review of matrix algebra,<br>Generalized procedure for Finite element analysis, Types of<br>elements and Finite element modeling, Coordinates and shape<br>functions, Design problems of structural analysis, Applications<br>and capabilities of various software for FEA.                                                                                            | 10    | 15                |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|
|               | Section II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                   |
| Module<br>No. | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hours | Weightage<br>in % |
| 1.            | <b>CNC Machine Tools</b><br>Introduction to NC, CNC, DNC, Manual Part programming,<br>Computer assisted part programming, Components of NC/CNC<br>system, Specification of CNC system, Classification of NC/CNC<br>Machine tools, Nomenclature of NC machine axes, CNC Control<br>System, CNC Programming, Automatic tool changer, Automatic<br>Pallet Changer, Machine tool structure, Guideways, Transmission<br>system, Drives and Feedback Devices, NC/CNC tooling, Canned<br>cycles and subroutines, APT language, Machining from 3D<br>models.                                                                                 | 18    | 30                |
| 2.            | Introduction to Group Technology, FMS and Rapid<br>Prototyping<br>Objectives, part families, similarities, design and Manufacturing<br>attributes, Classification methods- visual inspection, product<br>flow analysis and coding, G.T. machine cells and types, concept of<br>composite part, benefits and limitations, Flexible Manufacturing<br>system (FMS) – Concept, objectives, applications, classification,<br>FMS layouts, specifications, benefits, limitations, FMS planning<br>and implementation issues, Fundamentals of Rapid Prototyping,<br>Advantages and Applications of RP Types of Rapid Prototyping<br>Systems | 08    | 15                |
| 3.            | <b>Computer Integrated Manufacturing</b><br>Basic information of CIMS, hardware and software requirement<br>for CIMS, benefits, scope and Needs, CIMS wheel, elements of<br>CIMS and their role, Fundamentals of communication, data base<br>management                                                                                                                                                                                                                                                                                                                                                                              | 04    | 05                |

# List of Practical:

| Sr No | Name of Practical                                                          | Hours |
|-------|----------------------------------------------------------------------------|-------|
| 1.    | Prepare a programme for plotting lines and curves using algorithms learned | 02    |
| 2.    | Demonstration of 3D modeling using CAD Packages                            | 04    |
| 3.    | Demonstration of stress analysis using FEA package                         | 06    |
| 4.    | Part Programming using G and M code: Lathe and Milling jobs                | 04    |
| 5.    | Simulation of part programme                                               | 06    |

| 6. | CNC code generation using any CAM software                          | 04 |
|----|---------------------------------------------------------------------|----|
| 7. | Problems on Group Technology and Industrial case problems on coding | 02 |
| 8. | Study of Expert System in Manufacturing and MIS                     | 02 |

### Text Book(s):

| Title                                | Author/s                | Publication             |
|--------------------------------------|-------------------------|-------------------------|
| CAD, CAM and CIM                     | Radhakrishan P. and     | New Age International   |
|                                      | Subramaniyam S.         |                         |
| Numerical control and computer aided | Kundra T. K., Rao P. N. | Tata McGraw Hill        |
| manufacturing                        | and Tewari N. K.        | Publishing company Ltd. |

#### **Reference Book(s):**

| Title                          | Author/s             | Publication                        |
|--------------------------------|----------------------|------------------------------------|
| CAD / CAM: Theory and Practice | Ibrahim Zied,        | Tata McGraw Hill Publishing        |
|                                |                      | company Ltd.                       |
| CAD/CAM                        | Rao P. N.            | Tata McGraw Hill Publishing        |
|                                |                      | company Ltd.                       |
| Computer numerical control     | Radhakrishnan P      | New Central Book Agency            |
| machines                       |                      |                                    |
| CAD/CAM Computer Aided Design  | M. P. Groover, E. W. | Prentice Hall of India, New Delhi. |
| and Manufacturing              | Zimmers              |                                    |
| CNC Programming handbook       | Peter Smid           | Industrial Press Inc, New York     |

#### Web Material Link(s):

- <a href="http://help.autodesk.com/view/fusion360/ENU/">http://help.autodesk.com/view/fusion360/ENU/</a>
- <u>https://academy.autodesk.com/course/83871/essentials-cam</u>
- <u>https://www.autodesk.com/products/fusion-360/blog/getting-started-introduction-to-cam-and-toolpaths/</u>
- <u>https://knowledge.autodesk.com/support/fusion360/learnexplore/caas/CloudHelp/cloudhelp/ /ENU/Fusion-GetStarted/files/GUID-A93F8BAB-1B3B-457F9265-AFD16D8B732A-htm.html</u>

#### **Course Evaluation:**

#### Theory:

- Continuous Evaluation consists of two tests each of 30 Marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

#### Practical:

- Continuous Evaluation consists of Performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

#### Course Outcome(s):

- apply algorithms of graphical entity generation.
- understand mathematical aspects of geometrical modelling.
- understand and use finite element methods for analysis of simple components.
- develop programs related to manufacturing using codes.
- describe basic concepts of CAM application and understand CAM wheel.
- classify different components using different techniques of group technology.
- analyze the manufacturing network in industry.

#### **Department of Mechanical Engineering**

Course Code: SEME3090 Course Name: Industrial Engineering Prerequisite Course(s): --

#### **Teaching & Examination Scheme:**

| Teac   | hing Scheme | e (Hours/W | eek)   |     | Exa  | aminati | on Schei | ne (Mai | rks)  |       |
|--------|-------------|------------|--------|-----|------|---------|----------|---------|-------|-------|
| Theory | Dractical   | Tutorial   | Cradit | The | eory | Prac    | ctical   | Tut     | orial | Total |
| Theory | Flactical   | Tutoriai   | Cleuit | CE  | ESE  | CE      | ESE      | CE      | ESE   | TOLAI |
| 03     | 00          | 00         | 03     | 40  | 60   | 00      | 00       | 00      | 00    | 100   |

CE: Continuous Evaluation, ESE: End Semester Exam

#### **Objective(s) of the Course:**

To help learners to

- provide students insight into the concept of industrial engineering.
- familiarize the students with principles of work study and motion study.
- realize the importance of plant design and production planning in industries.
- enable the students to understand cost analysis and inventory management.
- understand about various Industrial Acts.

|               | Section I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                   |  |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|--|--|--|
| Module<br>No. | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hours | Weightage<br>in % |  |  |  |
| 1.            | Industrial EngineeringIntroduction, History; Activities and Techniques of IndustrialEngineering, Concepts of Management and Organization,Departmentalization and Decentralization, Types of Organizations                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 03    | 05                |  |  |  |
| 2.            | <b>Work Study &amp; Productivity</b><br>Production and Productivity, Factors influencing productivity,<br>Measurement of Productivity (Productivity Index), Work Content,<br>Excess work and Ineffective Time, Method Study – Objective, Steps,<br>Selection of job, Process Charts, Micro and Memo motion study,<br>Work Measurement – Objectives, Steps, Techniques, Performance<br>Rating, Allowance of Standard time, Techniques of work<br>measurement, Work Sampling – Confidence level, Methods of work<br>sampling, Computation of machine utilization and standard time,<br>Predetermined Motion and Time Study (PMTS), Method Time<br>Measurement (MTM) | 14    | 30                |  |  |  |
| 3.            | <b>Economics of Plant Layout And Location</b><br>Plant Location, Factors affecting Plant Layout, Importance and<br>Principles of Plant Layouts, Types of Layout – Product or Line<br>Layout, Process or Functional Layout, Fixed Position Layout,<br>Travel Chart.                                                                                                                                                                                                                                                                                                                                                                                                | 05    | 15                |  |  |  |

|        | Section II                                                                                                                                                                                                                                                                                                                                                                                    |       |           |  |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|--|--|--|
| Module | Content                                                                                                                                                                                                                                                                                                                                                                                       | Hours | Weightage |  |  |  |
| 110.   | Cost And Brook Evon Analysis                                                                                                                                                                                                                                                                                                                                                                  |       | 111 70    |  |  |  |
| 1.     | Cost of Production, Classification of Cost, Analysis of Production<br>Cost, Break Even Analysis – Graphical and Mathematical and Break<br>Even Point, Applications of Break Even Chart and Break Even<br>Analysis, Determination of Material Cost, Labour Cost, Expenses,<br>Over Head Expenses, Methods and procedure of job evaluation,<br>merit rating and wage incentive plans - Problems | 08    | 20        |  |  |  |
| 2.     | Production Planning And Control (PPC)<br>Types of Production, Production Cycle – Process Planning,<br>Forecasting, Loading, Scheduling, Dispatching, Routine.<br>Material Planning, ABC Analysis, Incoming Material Control,<br>Kanban System, MRP System, Master Production Schedule, Bill of<br>Materials, MRP Calculations                                                                 | 11    | 25        |  |  |  |
| 3.     | <b>Industrial Acts</b><br>Need for Industrial acts, Factories act 1948, Industrial dispute act<br>1947, The Indian trade unions act 1926, Industrial employment act<br>1946, Payment of wage act 1936, Workmen compensation act<br>1923, Payment of bonus act 1965, Employees provident fund<br>scheme 1952                                                                                   | 04    | 05        |  |  |  |

#### Text Book(s):

| Title                                            | Author/s   | Publication         |
|--------------------------------------------------|------------|---------------------|
| Industrial Engineering and Production Management | M. Mahajan | Dhanpat Rai & Sons. |
| Industrial Engineering and Production Management | M. Telsung | S. Chand & Co.      |

#### Reference Book(s):

| Title                                             | Author/s                      | Publication          |
|---------------------------------------------------|-------------------------------|----------------------|
| Industrial Engineering and Operational Management | S. K. Sharma<br>Savita Sharma | S. K. Kataria & Sons |

#### Web Material Link(s):

• <u>https://nptel.ac.in/courses/112107142/</u>

#### **Course Evaluation:**

#### Theory:

- Continuous Evaluation consists of two tests each of 30 Marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

#### Course Outcome(s):

- apply work and motion management techniques in industries.
- demonstrate the knowledge of designing plants and controlling production.
- optimize the resources of organization and improve the productivity.
- conduct market research, demand forecasting and cost analysis.
- aware about various Industrial Acts.

#### **Department of Mechanical Engineering**

Course Code: SEME3101 Course Name: Power Plant Engineering Prerequisite Course(s): SEME2011-Engineering Thermodynamics

#### **Teaching & Examination Scheme:**

| Teac   | Teaching Scheme (Hours/W |          |        |     | Exa  | aminati | on Schei | ne (Mai | rks)  |       |
|--------|--------------------------|----------|--------|-----|------|---------|----------|---------|-------|-------|
| Theory | Dractical                | Tutorial | Cradit | The | eory | Prac    | ctical   | Tut     | orial | Total |
| Theory | Flattical                | Tutoriai | Creuit | CE  | ESE  | CE      | ESE      | CE      | ESE   | TOLAI |
| 02     | 00                       | 01       | 03     | 40  | 60   | 00      | 00       | 20      | 30    | 150   |

CE: Continuous Evaluation, ESE: End Semester Exam

#### **Objective(s) of the Course:**

To help learners to

- identify which are the different power plants in operation with fundamentals various power generation units.
- interpret economics of power generation and country's energy hunger and potential.
- understand different power plant units like Steam based, gas-based power plants, Hydro and Nuclear power plants.
- explore power plants based on renewable resources like Solar, Wind, Geothermal, Tidal.

|         | Section I                                                          |       |           |  |  |  |
|---------|--------------------------------------------------------------------|-------|-----------|--|--|--|
| Module. | Content                                                            | Hours | Weightage |  |  |  |
| No.     |                                                                    |       | in %      |  |  |  |
|         | Economics of Power Generation                                      |       |           |  |  |  |
|         | Load duration curves, Connected load, Maximum load, Peak load,     |       |           |  |  |  |
| 1       | Base load and peak load power plants, Load factor, Plant capacity  | 04    | 15        |  |  |  |
| 1.      | factor, Plant use factor, Demand factor, Diversity factor, Cost of | 04    | 15        |  |  |  |
|         | power plant, Performance and operating characteristics of          |       |           |  |  |  |
|         | power plant, Tariff for electric energy.                           |       |           |  |  |  |
|         | Steam Generators                                                   |       |           |  |  |  |
|         | Steam generators like high pressure, Supercritical, Positive       |       |           |  |  |  |
| 2.      | circulation, Fluidized bed boilers, Waste heat recovery, study of  | 06    | 20        |  |  |  |
|         | Feed water heaters, Super heaters, air preheaters, Economiser,     |       |           |  |  |  |
|         | Condenser and Cooling tower.                                       |       |           |  |  |  |
|         | Coal and Ash handling Systems                                      |       |           |  |  |  |
|         | Coal handling and preparation, Combustion equipment and firing     |       |           |  |  |  |
| 2       | methods, Pulverized mills, Mechanical Stokers, Pulverized coal     | 05    | 1 5       |  |  |  |
| 5.      | firing systems, Cyclone Furnace, Necessity of Ash disposal, Ash    | 05    | 15        |  |  |  |
|         | handling systems, Dust collection and its disposal, Mechanical     |       |           |  |  |  |
|         | Dust Collector, Electrostatic precipitator.                        |       |           |  |  |  |

|                | Section II                                                                                                                                                                                                                                                                                                                                         |       |                   |  |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|--|--|
| Module.<br>No. | Content                                                                                                                                                                                                                                                                                                                                            | Hours | Weightage<br>in % |  |  |
| 1.             | <b>Introduction to Power Plants</b><br>Components and layouts, Working principle of Steam, Hydro,<br>Nuclear, Gas Turbine, Diesel Solar, Wind, Tidal, Geothermal<br>power plants.                                                                                                                                                                  | 07    | 25                |  |  |
| 2.             | Nuclear and Hydro Power Plant<br>Principal of Nuclear energy, Nuclear fission and chain reaction,<br>types of reactors, Boiling water reactor, Pressurised water<br>reactor, Pressurised Heavy water reactor, CANDU reactor Gas<br>cooled reactor, fast breeder reactor, Classification of Hydro-<br>electric power plants and their applications. | 05    | 15                |  |  |
| 3.             | <b>Diesel and Gas Turbine Power Plant</b><br>Diesel power plant Subsystems, Starting and stopping, Open and<br>closed cycle Gas turbine power plant, Intercooling, Reheating and<br>Regenerating, Combined Steam and Gas power plant.                                                                                                              | 03    | 10                |  |  |

#### List of Tutorial:

| Sr. No. | Name of Tutorial                                                          | Hours |  |  |
|---------|---------------------------------------------------------------------------|-------|--|--|
| 1.      | To solve the numerical based on Economics of power generation.            | 03    |  |  |
| 2.      | Study the Feed water treatment for steam generators.                      |       |  |  |
| 3.      | Selection of induced and forced draft fans and height of chimney.         | 02    |  |  |
| Λ       | Selection of Sites for Steam, Hydro, Nuclear, Gas Turbine, Diesel, Solar, | 02    |  |  |
| 4.      | Wind, Tidal, Geothermal power plants.                                     | 02    |  |  |
| 5       | To understand India's 3-Stage Nuclear Programme and nuclear power         | 02    |  |  |
| 5.      | plants in India.                                                          | 02    |  |  |
| 6       | To Study about Selection of prime movers and governing of hydraulic       | 02    |  |  |
| 0.      | turbines.                                                                 | 02    |  |  |
| 7       | Supercharging of Diesel engines and heat balance for diesel power plant   | 02    |  |  |
| /.      | using one case study.                                                     | 02    |  |  |

# Text Book (s):

| Title                      | Author/s | Publication           |
|----------------------------|----------|-----------------------|
| Power Plant Engineering 4e | P.K. Nag | McGraw-Hill Education |

#### **Reference Book(s):**

| Title                               | Author/s          | Publication            |  |  |
|-------------------------------------|-------------------|------------------------|--|--|
| A Course in Power Plant Engineering | S. C Arora and S. | Dhanpat Rai & Co.      |  |  |
|                                     | Domkundwar        |                        |  |  |
| A Text Book of Power Plant          | R. K. Rajput      | Laxmi Publications (P) |  |  |
| Engineering                         |                   | Ltd.                   |  |  |
| Power Plant Technology              | M.M. El-Wakil     | McGraw-Hill Education  |  |  |

#### Web Material Link(s):

- <u>https://nptel.ac.in/courses/112107216/</u> (Review of Thermodynamics)
- <u>https://nptel.ac.in/courses/108105058/8</u> (Thermal Power Plants)
- <u>https://nptel.ac.in/courses/112106133/15</u> (Capacity of Steam Power Plant)

#### **Course Evaluation:**

Theory:

- Continuous Evaluation consists of two tests each of 30 Marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

#### **Tutorial**:

- Model Preparation task consists of 10 marks.
- Internal Viva consists of 10 marks.
- Viva/Oral Performance of 30 marks during End Semester Exam.

#### **Course Outcome(s)**:

- interpret different parameters associated with power generation and supply.
- define the role of different power plants for fulfilment of energy requirement of country.
- identify the India's 3 Stage Nuclear Programme and current Power generation by Nuclear plants.
- understand different components and requirements of different power plant considering convention and non-conventional category.

#### **Centre for Skill Enhancement & Professional Development**

Course Code: SEPD3020 Course Name: Corporate Grooming & Etiquette Prerequisite Course(s): --

#### **Teaching & Examination Scheme:**

| Teaching Scheme (Hours/Week) |             |          | Examination Scheme (Marks) |     |      |      |        |     |       |       |
|------------------------------|-------------|----------|----------------------------|-----|------|------|--------|-----|-------|-------|
| Theory                       | Dractical   | Tutorial | Cradit                     | The | eory | Prac | ctical | Tut | orial | Total |
|                              | FIACUCAI IU | Tutoriai |                            | CE  | ESE  | CE   | ESE    | CE  | ESE   | TOtal |
| 01                           | 02          | 00       | 02                         | 00  | 00   | 50   | 50     | 00  | 00    | 100   |

CE: Continuous Evaluation, ESE: End Semester Exam

#### **Objective(s) of the Course:**

To help learners to

- learn corporate and professional structure and mannerisms.
- acquire self-development skills to balance casual and formal situation.
- polish their personal skills for apt behavior in the context of corporate structure.
- develop adequate Skill set required for the workplace.
- become aware about the professional etiquettes and tactics to follow them.

| Section – I |                                                     |       |                   |  |  |  |  |  |
|-------------|-----------------------------------------------------|-------|-------------------|--|--|--|--|--|
| Module      | Content                                             | Hours | Weightage<br>in % |  |  |  |  |  |
|             | Corporate Grooming                                  |       |                   |  |  |  |  |  |
| 1.          | Introduction to corporate culture                   |       |                   |  |  |  |  |  |
|             | Corporate Expectations                              | 03    | 25                |  |  |  |  |  |
|             | Need of Self-Grooming to the Corporate Expectations |       |                   |  |  |  |  |  |
|             | Understanding and importance of Professionalism     |       |                   |  |  |  |  |  |
|             | Personal Skills                                     |       |                   |  |  |  |  |  |
| 2           | Behavioral skills                                   |       |                   |  |  |  |  |  |
|             | Language Skills                                     | 0.4   | 25                |  |  |  |  |  |
| Ζ.          | Knowledge Skills                                    | 04    | 25                |  |  |  |  |  |
|             | Problem Solving Skills                              |       |                   |  |  |  |  |  |
|             | Developing professional attitude                    |       |                   |  |  |  |  |  |
|             | Section – II                                        |       |                   |  |  |  |  |  |
| Modulo      | Contont                                             | Hours | Weightage         |  |  |  |  |  |
| Module      | content                                             | nours | in %              |  |  |  |  |  |
|             | Management Skills                                   |       |                   |  |  |  |  |  |
| 1           | • Self-management                                   | 04    | 25                |  |  |  |  |  |
| 1.          | Time management                                     | 04    | 25                |  |  |  |  |  |
|             | Work life balance                                   |       |                   |  |  |  |  |  |

| 2. |    | Organizational Etiquettes    |     |    |
|----|----|------------------------------|-----|----|
|    | C  | General Workplace Etiquettes | 0.4 | 25 |
|    | Ζ. | Presentation Etiquettes      | 04  | 25 |
|    |    | Meeting Etiquettes           |     |    |

#### List of Practical:

| Sr. | Name of Practical                                                  | Hours |
|-----|--------------------------------------------------------------------|-------|
| No  |                                                                    |       |
| 1.  | Corporate Grooming (Video session/ Role Play/ Skit)                | 04    |
| 2.  | Personal Skills (Games/ Quiz/ Activities)                          | 08    |
| 3.  | Management Skills (Management Activities/ Video Sessions)          | 06    |
| 4.  | Organizational Etiquettes (Case Study/ Activities/ Video Sessions) | 06    |
| 5.  | Computer Assisted Activities of Corporate Grooming                 | 06    |

#### **Reference Book(s):**

| Title                               | Author/s           | Publication                             |  |  |  |
|-------------------------------------|--------------------|-----------------------------------------|--|--|--|
| Grooming and Etiquette for          | John Chibaya       | 2009                                    |  |  |  |
| Corporate Men and Women             | Mbuya              | 2009                                    |  |  |  |
| Effective Communication Skills for  | Andy Green         | Kogan Page, 2006                        |  |  |  |
| Public Relations                    |                    |                                         |  |  |  |
| Personality Development and Soft    | Barun Mitra        | Oxford University Press, 2016           |  |  |  |
| Skills                              | Dai un Mitra       |                                         |  |  |  |
| The EQ Edge: Emotional Intelligence | Stein, Steven J. & | Wilow & Song 2006                       |  |  |  |
| and Your Success                    | Howard E. Book     | Wiley & 30113, 2000.                    |  |  |  |
| Cross Cultural Management:          | Madhavan           | Outond University Press 2016            |  |  |  |
| Concepts and Cases                  |                    | Oxford University Press, 2016           |  |  |  |
| Corporate Grooming and Etiquette    | Sarvesh Gulati     | Rupa Publications India Pvt. Ltd., 2012 |  |  |  |
| Behavioural Science: Achieving      | Dr. Abha Singh     | John Wiley & Song 2012                  |  |  |  |
| Behavioural Excellence for Success  |                    | John Whey & Johs, 2012                  |  |  |  |

# **Course Evaluation:**

# Practical

- Continuous Evaluation consists of Performance of Practical to be evaluated out of 10 marks for each practical and average of the same will be converted to 30 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/drawing/test/submission of 25 marks during End Semester Exam.
- Viva/Oral performance of 25 marks during End Semester Exam.

# Course Outcome(s):

Students will be able to

- understand the importance of professional etiquettes and ways to improve the same.
- gain the knowledge and practice of skill sets required in corporate set up.
- learn personal management skills in the organizational context.
- develop an awareness about the corporate etiquettes.

#### **Department of Mechanical Engineering**

Course Code: SEME3512 Course Name: Advance Manufacturing Technology Prerequisite Course(s): SEME2030 - Non-Cutting Manufacturing Processes SEME2050 - Forming & Machining Processes

#### **Teaching & Examination Scheme:**

| Teaching Scheme (Hours/Week) |           |                    | Examination Scheme (Marks) |        |     |           |     |          |     |       |
|------------------------------|-----------|--------------------|----------------------------|--------|-----|-----------|-----|----------|-----|-------|
| Theory                       | Practical | Practical Tutorial | rial Credit                | Theory |     | Practical |     | Tutorial |     | Total |
|                              |           |                    |                            | CE     | ESE | CE        | ESE | CE       | ESE | TOLAI |
| 03                           | 00        | 00                 | 03                         | 40     | 60  | 00        | 00  | 00       | 00  | 100   |

CE: Continuous Evaluation, ESE: End Semester Exam

#### **Objective(s) of the Course:**

To help learners to

- learn the principles of material removal mechanism of nontraditional processes.
- provide depth knowledge in selection of advanced machining process to fabricate intricate and complex shapes in difficult to machine material.
- provide awareness of advanced Nano and additive manufacturing techniques.

| Section I |                                                                                                                                                                                                                                                                                                                                                                                                                 |       |           |  |  |  |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|--|--|--|--|
| Module    | Content                                                                                                                                                                                                                                                                                                                                                                                                         | Hours | Weightage |  |  |  |  |
| NO.       |                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 111 90    |  |  |  |  |
| 1.        | Introduction<br>Trends in modern manufacturing; characteristics and<br>classification of modern manufacturing methods, considerations<br>in the process selection.                                                                                                                                                                                                                                              | 02    | 05        |  |  |  |  |
| 2.        | <b>Mechanical Advanced Machining Processes</b><br>Introduction, principle, process description, process capabilities,<br>material removal mechanism, parametric analysis, tool design,<br>limitations, and applications of Ultrasonic Machining (USM),<br>Abrasive Jet Machining (AJM), Water Jet Machining (WJM) and<br>Abrasive Water Jet Machining (AWJM) processes.                                         | 12    | 25        |  |  |  |  |
| 3.        | <b>Electro-Chemical Processes</b><br>Fundamental principle of ECM process, Chemistry of the ECM<br>processes, process capabilities, determination of material<br>removal rate, surface finish and accuracy, limitations, and<br>applications of Electrochemical Machining (ECM),<br>Electrochemical Grinding (ECG), Electrochemical deburring,<br>Electrochemical honing and Chemical Machining (CM) processes. | 08    | 20        |  |  |  |  |

| Section II    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                   |  |  |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|--|--|--|--|
| Module<br>No. | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hours | Weightage<br>in % |  |  |  |  |
| 1.            | Thermal Metal Removal Processes<br>Electrical Discharge Machining (EDM): Working principle,<br>process description, process capabilities, power circuits,<br>mechanism of material removal, selection of tool electrode<br>and dielectric fluid, limitations, and applications. Wirecut<br>electro discharge machining, powder mixed electro<br>discharge machining process.<br>Laser Beam Machining (LBM): Working principle, type of<br>lasers, machining applications of lasers, mechanism of<br>material removal, shape and material, applications and<br>limitation.<br>Electron Beam Machining (EBM): Generation and control of<br>electron beam, EBM systems, process analysis &<br>characteristics, mechanism of material removal, shape and<br>material, applications and limitations.<br>Plasma Arc Machining (PAM) and Ion Beam Machining (IBM):<br>Process principle, analysis and characteristics of process,<br>mechanism of material removal, shape and material,<br>applications and limitations. | 10    | 30                |  |  |  |  |
| 2.            | <b>Hybrid Machining</b><br>Concept, classification, process capabilities, and applications<br>of various hybrid machining methods based on USM, EDM,<br>ECM, etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 04    | 7                 |  |  |  |  |
| 3.            | Micromachining Processes<br>Introduction to micro machining methods; material removal<br>mechanism and process capability of micro machining<br>methods like micro -turning, micro-milling, micro-drilling,<br>micro EDM, micro- WEDM, micro ECM, etc. ultra-precision<br>machining, electrolytic in-process dressing and grinding.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 05    | 7                 |  |  |  |  |
| 4.            | Additive Processes:<br>Introduction to additive manufacturing processes,<br>classification, laminated object manufacturing process,<br>adhesive manufacturing process, and digital manufacturing<br>process.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 04    | 6                 |  |  |  |  |

# Text Book(s):

| Title                           | Author/s     | Publication                        |
|---------------------------------|--------------|------------------------------------|
| Introduction to micro machining | V. K. Jain   | Narosa publishing house, New Delhi |
| Nonconventional machining       | P. K. Mishra | Narosa publishing house, New Delhi |
| Modern Machining Processes      | P. C. Pandey | Tata McGraw Hill, New Delhi        |

#### **Reference Book(s):**

| Title                                  | Author/s                    | Publication                  |
|----------------------------------------|-----------------------------|------------------------------|
| Advanced Machining processes           | V. K. Jain                  | Allied publishers, New Delhi |
| Nontraditional manufacturing processes | G. Benedict                 | Marcel Dekker, New York      |
| Advanced methods of machining          | J. A. McGeough              | Chapman & Hall, London       |
| Manufacturing Scienc                   | A. Ghosh and A. K.<br>Malli | East-West Press, New Delhi   |

#### **Course Evaluation:**

#### Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

#### Course Outcome(s):

- identify suitable manufacturing process for advanced materials and manufacturing complication.
- deal with sophisticated and advanced equipment such as IBM, EBM, PAM, Waterjet machine etc.
- understand the micro machining processes.
- use the additive manufacturing concept in ear of industry 4.0.

#### **Department of Mechanical Engineering**

Course Code: SEME3521 Course Name: Applied Thermodynamics Prerequisite Course(s): SEME2011-Engineering Thermodynamics

#### **Teaching & Examination Scheme:**

| Teaching Scheme (Hours/Week) |           |          | Examination Scheme (Marks) |     |      |      |        |     |       |       |
|------------------------------|-----------|----------|----------------------------|-----|------|------|--------|-----|-------|-------|
| Theory                       | Dractical | Tutorial | Cradit                     | The | eory | Prac | ctical | Tut | orial | Total |
|                              | Plactical | Tutorial | Credit                     | CE  | ESE  | CE   | ESE    | CE  | ESE   |       |
| 03                           | 00        | 00       | 03                         | 40  | 60   | 00   | 00     | 00  | 00    | 100   |

CE: Continuous Evaluation, ESE: End Semester Exam

#### **Objective(s) of the Course:**

To help learners to

- extend various concepts of Engineering thermodynamics and their applications.
- interpret the concepts of thermodynamics associated with combustion processes.
- understand the concepts of Exergy balance and its application to various devices.
- apply different thermodynamic relations between different thermodynamic properties.
- extend the knowledge of various gas and power cycles and its applications to field.

| Section I      |                                                                                                                                                                                                                                                                                                                                          |       |                   |  |  |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|--|--|
| Module.<br>No. | Content                                                                                                                                                                                                                                                                                                                                  | Hours | Weightage<br>in % |  |  |
| 1.             | <b>Combustion thermodynamics</b><br>Stoichiometric air and excess air for combustion of fuels, Mass<br>Balance, Exhaust gas analysis. A/F ratio, Rich Mixture, Lean<br>Mixture and their requirements. enthalpy of formation,<br>Dissociation and equilibrium, emissions, Combustion efficiency,<br>Fuel Cell.                           | 06    | 15                |  |  |
| 2.             | Basic applications of ThermodynamicsApplication of S.F.E.E for various Mechanical Devices,discharging and charging of a tank, Application of EntropyPrincipals, Entropy transfer with heat flow, P-V, P-T and T-Vdiagram of Pure Substance, P-V-T Surface.                                                                               | 08    | 15                |  |  |
| 3.             | <b>Exergy</b><br>Dead state, Law of Degradation of Energy, Exergy of Steady flow<br>system, Application of Gouy-Stodola Equation, Exergy Balance<br>for Closed system, Exergy principal, Exergy balance for Steady<br>flow system, second law efficiencies for turbine, Compressor and<br>pump, Heat exchanger and Mixing of two fluids. | 09    | 20                |  |  |

| Section II     |                                                                                                                                                                                                                                                                                                      |       |                   |  |  |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|--|--|
| Module.<br>No. | Content                                                                                                                                                                                                                                                                                              | Hours | Weightage<br>in % |  |  |
| 1.             | <b>Thermodynamic Relations</b><br>Mathematical theorems used for relations, The Maxwell<br>relations, TdS Equation, Relationships involving specific heats,<br>Joule-Thomson or Joule-Kelvin coefficient, Clausis–clapeyron<br>equation, enthalpy, entropy, Gibbs Function and Gibbs Phase<br>rules. | 10    | 25                |  |  |
| 2.             | Gas and Vapour Power cycles<br>Binary vapour cycle, Combined cycles, Cogeneration, Stirling<br>Cycle, Ericsson Cycle, Lenoir Cycle, Atkinson Cycle with<br>applications, ideal regenerative gas turbine cycle with<br>intercooling and reheat.                                                       | 06    | 15                |  |  |
| 3.             | <b>Jet propulsion</b><br>Introduction to the principles of jet propulsion, Turbojet and<br>turboprop engines and their processes, Principle of rocket<br>propulsion, Introduction to Rocket Engine.                                                                                                  | 06    | 10                |  |  |

#### Text Book (s):

| Title                            | Author/s | Publication      |
|----------------------------------|----------|------------------|
| Basic and Applied Thermodynamics | P.K. Nag | Tata Mcgraw-Hill |

#### **Reference Book(s):**

| Title                           | Author/s                     | Publication            |  |
|---------------------------------|------------------------------|------------------------|--|
| Fundamentals of Thermodynamics  | Borgnakke & Sonntag          | Wiley India (P) Ltd.   |  |
| Thermodynamics - An Engineering | Yunus Cengel & Boles         | McGraw-Hill Education  |  |
| Approach                        |                              |                        |  |
| Engineering Thermodynamics      | Gordon Rogers and Yon Mayhew | Pearson Education Ltd. |  |

#### Web Material Link(s):

- <u>https://nptel.ac.in/courses/112106133/</u> (Applied thermodynamics)
- <u>https://nptel.ac.in/courses/112105123/</u> (Fundamentals of Basic Thermodynamics)
- <u>https://nptel.ac.in/courses/112103243/</u> (Laws of Thermodynamics)
- <u>https://nptel.ac.in/courses/112103016/</u> (Advance Engineering Thermodynamics)

#### **Course Evaluation:**

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

#### **Course Outcome(s)**:

- understand the basic laws of thermodynamics to the various engineering devices.
- learn the concept of pure substance and applications of Entropy.
- understand the importance of Second law efficiency and its applications for various mechanical devices.
- develop the knowledge of different aircraft engines and their applications.

#### **Department of Mechanical Engineering**

Course Code: SEME3530 Course Name: Estimation & Costing Prerequisite Course(s): --

#### **Teaching & Examination Scheme:**

| Teaching Scheme (Hours/Week) |           |          |        | Exa | aminati | on Schei | ne (Mai | rks) |       |       |
|------------------------------|-----------|----------|--------|-----|---------|----------|---------|------|-------|-------|
| Theory                       | Practical | Tutorial | Credit | The | eory    | Prac     | ctical  | Tut  | orial | Total |
| Theory                       | Flactical | Tutoriai | Cleuit | CE  | ESE     | CE       | ESE     | CE   | ESE   | TOLAI |
| 03                           | 00        | 00       | 03     | 40  | 60      | 00       | 00      | 00   | 00    | 100   |

CE: Continuous Evaluation, ESE: End Semester Exam

#### **Objective(s) of the Course:**

To help learners to

- provide deep study of the costing principles, techniques and cost component.
- address the underlying concepts, methods and application of Engineering Costing & Estimating.

|               | Section I                                                       |       |                   |  |  |  |  |
|---------------|-----------------------------------------------------------------|-------|-------------------|--|--|--|--|
| Module<br>No. | Content                                                         | Hours | Weightage<br>in % |  |  |  |  |
|               | Costing & Estimation                                            |       |                   |  |  |  |  |
|               | Definition, Scope, Objectives & Significance                    |       |                   |  |  |  |  |
|               | Cost Objects, Cost Centers & Cost Units                         |       |                   |  |  |  |  |
| 1.            | Classification of Cost                                          | 04    | 05                |  |  |  |  |
|               | Types of Estimate                                               |       |                   |  |  |  |  |
|               | Standard Data                                                   |       |                   |  |  |  |  |
|               | Methods of Estimates                                            |       |                   |  |  |  |  |
|               | Cost Ascertainment – Element of Cost                            |       |                   |  |  |  |  |
|               | • Material Cost - EOQ, Safety Stock, Minimum level,             |       |                   |  |  |  |  |
|               | Maximum Level, Re-order Quantity, Types of inventory            |       |                   |  |  |  |  |
|               | control systems, Valuation by FIFO, LIFO etc.,                  |       |                   |  |  |  |  |
| 2             | Illustrative Example                                            | 07    | 15                |  |  |  |  |
| ۷.            | • Labour Cost - Methods of wage payments for direct and         | 07    | 15                |  |  |  |  |
|               | indirect labour, Piece rate system, Wage incentives:            |       |                   |  |  |  |  |
|               | different plans, Illustrative Example                           |       |                   |  |  |  |  |
|               | • <b>Overheads</b> – Collection, Classification, Apportionment, |       |                   |  |  |  |  |
|               | Absorption treatment of overhead, Illustrative Example          |       |                   |  |  |  |  |
|               | Marginal Costing                                                |       |                   |  |  |  |  |
| 3             | Depreciation – Purpose & Method - straight line                 | 07    | 20                |  |  |  |  |
| 5.            | method, Diminishing balance method                              | 07    | 20                |  |  |  |  |
|               | Break-even analysis                                             |       |                   |  |  |  |  |

|               | Margin of safety                                       |       |                   |
|---------------|--------------------------------------------------------|-------|-------------------|
|               | • Application of marginal costing for decision making. |       |                   |
|               | Illustrative Example                                   |       |                   |
|               | Budget and Budgetary Control                           |       |                   |
|               | Concepts, Types of Budgets                             |       |                   |
| 4.            | Budgetary Control                                      | 04    | 10                |
|               | Preparation of Budgets                                 |       |                   |
|               | Illustrative Example                                   |       |                   |
|               | Section II                                             |       | r                 |
| Module<br>No. | Content                                                | Hours | Weightage<br>in % |
|               | Cost Estimation of Forging Shop                        |       |                   |
|               | Losses in forging                                      |       |                   |
|               | Forging Cost                                           |       |                   |
|               | Illustrative Example                                   |       |                   |
| 1.            | Cost Estimation of Foundry Shop                        | 09    | 20                |
|               | Estimation of pattern cost                             |       |                   |
|               | Foundry losses                                         |       |                   |
|               | Steps for Finding Costing cost                         |       |                   |
|               | Illustrative Example                                   |       |                   |
|               | Cost Estimation of Fabrication Shop                    |       |                   |
| 2             | Weldments & Welded joints                              | 05    | 10                |
| 2.            | Welding Cost                                           | 00    | 10                |
|               | Illustrative Example                                   |       |                   |
|               | Time & Cost Estimation of Machine Shop                 |       |                   |
|               | Estimation of machining time for lathe operations      |       |                   |
| 3.            | • Estimation of machining time for drilling, boring,   | 09    | 20                |
|               | shaping, planning, milling and grinding operations     |       |                   |
|               | Illustrative Example                                   |       |                   |

# Text Book(s):

| Title                             | Author/s                    | Publication                  |
|-----------------------------------|-----------------------------|------------------------------|
| Machanical Estimating and Costing | P.D. Sinha                  | Tata McGraw Hill             |
| Mechanical Estimating and Costing | D.F. Siiiia                 | Publishing Co. Ltd. N. Delhi |
| Mechanical Estimating and Costing | T.R. Banga and S. C. Sharma | Khanna Publishers, Delhi-6   |

# **Reference Book(s):**

| Title                                          | Author/s                                           | Publication                       |
|------------------------------------------------|----------------------------------------------------|-----------------------------------|
| Industrial Engineering & Operations management | S. K. Sharma & Savita Sharma                       | Kataria publishers                |
| Process Planning & Cost Estimation             | R. Kesoram, C. Elanchezhian<br>& B. Vijaya Ramnath | New age international publication |
| Process Planning & Cost Estimation             | M. Adithan                                         | New age international publication |

#### **Course Evaluation:**

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

#### Course Outcome(s):

- identify different areas of Engineering Costing & Estimating.
- find the applications of all the areas in day to day life.
- apply cost estimating in decision making.

#### **Department of Science & Humanities**

Course Code: SESH3551 Course Name: Electrical Technology Prerequisite Course(s): --

#### **Teaching & Examination Scheme:**

| Teaching Scheme (Hours/Week) |           |          |        | Exa | aminati | on Schei | ne (Mai | rks) |       |       |
|------------------------------|-----------|----------|--------|-----|---------|----------|---------|------|-------|-------|
| Theory                       | Practical | Tutorial | Credit | The | eory    | Prac     | ctical  | Tut  | orial | Total |
| Theory                       | Flattical | Tutoriai | Creuit | CE  | ESE     | CE       | ESE     | CE   | ESE   | TOLAI |
| 03                           | 00        | 00       | 03     | 40  | 60      | 00       | 00      | 00   | 00    | 100   |

CE: Continuous Evaluation, ESE: End Semester Exam

#### **Objective(s) of the Course:**

To help learners to

- demonstrate the basic steps involved in design of electrical machines.
- prepare students to perform the analysis of any electromechanical system.
- empower students to understand the working of electrical equipment used in everyday life.
- make the student be able to complete design of transformers, induction machines, dc machines and synchronous machines.

| Section I |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |           |  |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|--|--|--|
| Module    | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | Weightage |  |  |  |
| No.       | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nours | in %      |  |  |  |
| 1.        | <ul> <li>Single phase transformer</li> <li>Types, KVA rating, approximate equivalent circuit, voltage regulation and efficiency of transformer, condition for maximum efficiency.</li> <li>Three phase transformers</li> <li>Types of transformer connection (star/star, star/delta, delta/star, and delta/delta) and applications based on appreciations (star/star, star/delta, delta/star, and delta/delta)</li> </ul>                                                                                                                             | 12    | 25        |  |  |  |
|           | power transformer, distribution transformer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |           |  |  |  |
| 2.        | Three phase Induction Motor<br>Constructional feature, working principle of three phase<br>induction motors, types; torque equation, torque slip<br>characteristics; power stages; efficiency; types of starters;<br>methods of speed control & Industrial applications.<br>Single phase induction motors<br>Types, construction, working principle of split phase and<br>shaded pole type induction motors, applications. Specifications<br>of induction motors (KW rating, rated voltage, current rating,<br>frequency, speed, class of insulation) | 10    | 25        |  |  |  |

| Section II    |                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                   |  |  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|--|--|
| Module<br>No. | Content                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hours | Weightage<br>in % |  |  |
| 1.            | <b>Synchronous Generator</b><br>Constructional features (Salient and non- salient),working<br>principle, emf equation, synchronous speed of an alternator,<br>concept of synchronous reactance and impedance, phasor<br>diagram of loaded alternator, voltage regulation of alternator<br>by direct loading method and synchronous impedance method.<br>Specifications of synchronous generator.                                               | 13    | 25                |  |  |
| 2.            | <b>D.C. Motor</b><br>Construction, working principle of D.C. generator, emf equation<br>of D C generator. (Theoretical concept only). Working principle<br>of D.C. motor. Types of D. C. motor, back emf, torque equation<br>for D.C. motor, characteristics of D. C. motor (series, shunt and<br>compound), starters of D.C. shunt and series motor, methods<br>for speed control of D.C shunt and series motors, Industrial<br>applications. | 10    | 25                |  |  |

#### Text Book(s):

| Title                      | Author/s                    | Publication                 |
|----------------------------|-----------------------------|-----------------------------|
| Electrical Technology      | B. L.Theraja                | S Chand Publication Co Ltd. |
| Fundamentals of Electrical | Ashfaq Husain               | Dhannat Rai& Co             |
| Engineering                | Asiliaq Husaili             | Dhanpat Nai& Co.            |
| Electrical machines        | D P Kothari and I J Nagrath | Tata McGraw Hill            |

#### **Reference Book(s):**

| Title                             | Author/s          | Publication                       |
|-----------------------------------|-------------------|-----------------------------------|
| Electrical Machinery              | S.K. Bhattacharya | TTTI Chandigad                    |
| Electrical Technology             | Edward Hughes     | Pearson Education                 |
| Art and Science of Utilization of | HDratan           | Dhannat Pai and Co. Third Edition |
| Electrical Energy                 | птацар            | Dhanpat Karanu Co, i niru Eurion  |
| Power Electronics                 | Dr. P.S. Bhimbra  | Khanna Publication                |

#### **Course Evaluation:**

#### Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

#### Course Outcome(s):

- formulate and then analyze the working of any electrical machine using mathematical model under loaded and unloaded conditions.
- analyze the response of any electrical machine.
- select a suitable measuring instrument for a given application.

#### **Department of Mechanical Engineering**

Course Code: SEME3560 Course Name: Industrial Maintenance and safety Prerequisite Course(s): --

#### **Teaching & Examination Scheme:**

| Teaching Scheme (Hours/Week) |           |          |        | Ex  | aminati | on Schei | ne (Mai | rks) |       |       |
|------------------------------|-----------|----------|--------|-----|---------|----------|---------|------|-------|-------|
| Theory                       | Dractical | Tutorial | Cradit | The | eory    | Prac     | ctical  | Tut  | orial | Total |
| Theory                       | Flattical | Tutorial | Creun  | CE  | ESE     | CE       | ESE     | CE   | ESE   | TOLAI |
| 03                           | 00        | 00       | 03     | 40  | 60      | 00       | 00      | 00   | 00    | 100   |
|                              | _         |          |        |     |         |          |         |      |       |       |

CE: Continuous Evaluation, ESE: End Semester Exam

#### **Objective(s) of the Course:**

To help learners to

- understand the concepts of maintenance planning and performance of the machines.
- learn the theory of industrial safety and management.
- know the safety act.

| Section I |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |           |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|--|--|
| Module    | Contant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hours | Weightage |  |  |
| No.       | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nours | in %      |  |  |
| 1.        | <b>Principles and practices of Maintenance planning</b><br>Basic Principles of maintenance planning – Objectives and<br>principles of planned maintenance activity – Importance and<br>benefits of sound Maintenance systems – Reliability and<br>machine availability, Equipment Life cycle, Measures for<br>Maintenance. Performance: Equipments breakdowns, Mean<br>Time Between Failures, Mean Time To Repair, Factors of<br>availability, Maintenance organization, Maintenance economics. | 08    | 20        |  |  |
| 2.        | Maintenance policies and preventive maintenance<br>Maintenance categories – Comparative merits of each category<br>– Preventive maintenance, Maintenance schedules: Repair cycle,<br>Principles and methods of lubrication, Fault Tree Analysis, Total<br>Productive Maintenance: Methodology and Implementation.                                                                                                                                                                               | 08    | 15        |  |  |
| 3.        | <b>Condition Monitoring</b><br>Condition Monitoring: Cost comparison with and without<br>Condition Monitoring, On-load testing and off load. Methods and<br>instruments for Condition Monitoring, Temperature sensitive<br>tapes, Pistol thermometers, wear-debris analysis, noise<br>vibration and harshness analysis of machines                                                                                                                                                              | 07    | 15        |  |  |

|        | Section II                                                      |       |           |  |  |  |
|--------|-----------------------------------------------------------------|-------|-----------|--|--|--|
| Module | Content                                                         | Hours | Weightage |  |  |  |
| No.    |                                                                 |       | in %      |  |  |  |
|        | Introduction to the development of industrial safety and        |       |           |  |  |  |
|        | management:                                                     |       |           |  |  |  |
|        | History and development of Industrial safety: Implementation of |       |           |  |  |  |
| 1.     | factories act, Formation of various councils, Safety and        | 08    | 20        |  |  |  |
|        | productivity, Safety organizations. Safety committees, safety   |       |           |  |  |  |
|        | committee structure, Roll of management and roll of Govt. in    |       |           |  |  |  |
|        | industrial safety, Safety analysis.                             |       |           |  |  |  |
|        | Accident preventions, protective equipment and the Acts         |       |           |  |  |  |
| 2.     | Personal protective equipment, Survey the plant for locations   |       |           |  |  |  |
|        | and hazards, Part of body to be protected, Education and        |       |           |  |  |  |
|        | training in safety, Prevention causes and cost of accident,     | 07    | 15        |  |  |  |
|        | Housekeeping, First aid, Firefighting equipment, Accident       |       |           |  |  |  |
|        | reporting, Investigations, Industrial psychology in accident    |       |           |  |  |  |
|        | prevention, Safety trials.                                      |       |           |  |  |  |
|        | Safety Acts                                                     |       |           |  |  |  |
|        | Features of Factory Act, Introduction of Explosive Act, Boiler  |       |           |  |  |  |
|        | Act, ESI Act, Workman's compensation Act, Industrial Hygiene,   |       |           |  |  |  |
|        | Occupational safety, Diseases prevention, Ergonomics,           |       |           |  |  |  |
| 3.     | Occupational diseases, stress, fatigue, health, safety and the  | 07    | 15        |  |  |  |
|        | physical environment, Engineering methods of controlling        |       |           |  |  |  |
|        | chemical hazards, safety and the physical environment, Control  |       |           |  |  |  |
|        | of industrial noise and protection against it, Code and         |       |           |  |  |  |
|        | regulations for worker safety and health.                       |       |           |  |  |  |

# Text Book(s):

| Title                                          | Author/s           | Publication      |
|------------------------------------------------|--------------------|------------------|
| Industrial Maintenance Management              | Srivastava, S.K.   | S. Chand and Co. |
| Installation, Servicing and Maintenance        | Bhattacharya, S.N. | S. Chand and Co. |
| Occupational Safety Management and Engineering | Willie Hammer      | Prentice Hall    |

# **Reference Book(s):**

| Title                             | Author/s       | Publication                            |  |  |
|-----------------------------------|----------------|----------------------------------------|--|--|
| Industrial Maintenance            | Garg, M.R.     |                                        |  |  |
| Maintenance Engineering Hand book | Higgins, L.R.  | 5 <sup>th</sup> Edition, McGraw Hill   |  |  |
| Condition Monitoring              | Armstrong      | BSIRSA                                 |  |  |
| Handbook of Condition Monitoring  | Davies         | Chapman and Hall                       |  |  |
| Industrial Safety and Health      | Day Actabl C   | Eth Edition Drontico Hall              |  |  |
| Management                        | Ray Asialli C. | 5 <sup>th</sup> Edition, Frencice Hall |  |  |
| Reliability and Maintenance       |                |                                        |  |  |
| Engineering                       | S. C. Mishra   | New Age Publishing house               |  |  |

#### **Course Evaluation:**

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

#### Course Outcome(s):

- understand the maintenance policies and planning
- incorporate different maintenance schedule for machines.
- execute condition monitoring of machines.
- know accidents reporting procedure.
- get the code and regulations for worker safety and health.

#### **Department of Mechanical Engineering**

Course Code: SEME4550 Course Name: Mechatronics Prerequisite Course(s): SESH2211-Basics of Electrical & Electronics

#### **Teaching & Examination Scheme:**

| Teaching Scheme (Hours/Week) |           |                           | Examination Scheme (Marks) |          |        |        |        |     |       |       |    |     |       |
|------------------------------|-----------|---------------------------|----------------------------|----------|--------|--------|--------|-----|-------|-------|----|-----|-------|
| Theory                       | Dractical | Tutorial                  | torial Cradit              |          | eory   | Prac   | ctical | Tut | orial | Total |    |     |       |
| Theory                       |           | Theory Fractical Tutorial | Tutorial                   | Tutoriai | Credit | Creuit | CE     | ESE | CE    | ESE   | CE | ESE | TOLAI |
| 03                           | 00        | 00                        | 03                         | 40       | 60     | 00     | 00     | 00  | 00    | 100   |    |     |       |

CE: Continuous Evaluation, ESE: End Semester Exam

#### **Objective(s) of the Course:**

To help learners to

- discover the fundamentals of mechatronics as well as their design and control.
- develop an ability to design a system, component, or process to meet desired needs within realistic constraints.

| Course   | Content: |
|----------|----------|
| do ai be | Gomeone  |

| Section I |                                                                     |       |           |  |  |
|-----------|---------------------------------------------------------------------|-------|-----------|--|--|
| Module.   | Contont                                                             | Hours | Weightage |  |  |
| No.       | content                                                             | nours | in %      |  |  |
|           | Introduction to Mechatronics                                        |       |           |  |  |
|           | Mechatronic system elements, Measurement system, Control            |       |           |  |  |
| 1.        | system, Microprocessor based controllers & its applications, Other  | 06    | 10        |  |  |
|           | applications with mechatronic approach, Building blocks of          |       |           |  |  |
|           | mechatronic system.                                                 |       |           |  |  |
|           | Sensors & Transducers                                               |       |           |  |  |
| 2.        | Classification, Performance terminologies, Displacement, Position   |       |           |  |  |
|           | & proximity sensors, Photo detectors, Optical encoders, Pneumatic   | 00    | 20        |  |  |
|           | sensor, Hall effect sensor, Velocity & motion sensors: Incremental  | 00    | 20        |  |  |
|           | encoder, Tacho-generator, Piezoelectric sensors, Tactile sensors,   |       |           |  |  |
|           | Flow & temperature sensors: Ultrasonic sensors, Light sensors.      |       |           |  |  |
|           | Actuation Systems                                                   |       |           |  |  |
|           | Pneumatic & hydraulic actuation systems: System configuration,      |       |           |  |  |
|           | Control System & its elements, Linear actuators, Rotary actuators.  |       |           |  |  |
| 3.        | Mechanical actuation: System types & its configuration, Fixed ratio | 08    | 20        |  |  |
|           | type, Invariant motion profile type, variator etc. Electrical       |       |           |  |  |
|           | actuation system types & configurations, Mechanical switches,       |       |           |  |  |
|           | Solid state switches, Solenoids.                                    |       |           |  |  |

| Section II |                                                                     |       |           |  |  |
|------------|---------------------------------------------------------------------|-------|-----------|--|--|
| Module     | Content                                                             | Hours | Weightage |  |  |
| No.        |                                                                     |       | in %      |  |  |
|            | Digital Circuits                                                    |       |           |  |  |
| 1          | Boolean algebra combinational circuits. (adders, subtractors,       | 08    | 20        |  |  |
| 1.         | encoders, decoders, multiplexers, de-multiplexers, memory units:    | 00    | 20        |  |  |
|            | RAM, ROM, EPROM etc.), Sequential circuits (elementary).            |       |           |  |  |
|            | Analog Signal Processing                                            |       |           |  |  |
|            | Amplifiers, Operational amplifiers, Ideal model for operational     |       |           |  |  |
| 2          | amplification, Inverting amplifier, Non-inverting amplifier,        | 08    | 20        |  |  |
| Ζ.         | Summer, Difference amplifier, Instrumentation amplifier,            |       |           |  |  |
|            | Integrator, Differentiator, Comparator, ADC, DAC.                   |       |           |  |  |
|            | Electronic System Design                                            |       |           |  |  |
| 2          | Introduction to MPU & MCU, Assembly programming, Interfacing,       | 07    | 10        |  |  |
| 5.         | Introduction to PLC & basics of PLC programming, Basics of filters, |       | 10        |  |  |
|            | Types of filters, Basics of LPS & SMPS, Clipper & clamper circuits. |       |           |  |  |

#### Text Book(s):

| Title                           | Author/s      | Publication                         |
|---------------------------------|---------------|-------------------------------------|
| Mechatronics                    | Necsulescu D. | Pearson Education (Singapore), 2002 |
| Digital Logic & Computer Design | Morris Mano   | Prentice Hall, 2001                 |
| Mechatronics                    | HMT Ltd.      | Tata McGraw Hill Publication, 2002  |

#### **Reference Book(s):**

| Title                     | Author/s              | Publication                    |
|---------------------------|-----------------------|--------------------------------|
| Mechatronics              | W. Bolton             | Pearson Education (India) 2003 |
| Mechatronic System Design | Shetty D., Kolk R. A. | PWS Publicity Boston, 2002     |

#### **Course Evaluation:**

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

#### Course Outcome(s):

- integrate mechanical, electronics, control and computer engineering in the design of mechatronics systems.
- do the complete design, building, interfacing and actuation of a mechatronic system for a set of specifications.

#### **Department of Mechanical Engineering**

Course Code: SEME3581 Course Name: Plastics, Ceramics and Composites Prerequisite Course(s): SEME2020 - Material Science and Metallurgy

#### **Teaching & Examination Scheme:**

| Teaching Scheme (Hours/Week) |           |              | Examination Scheme (Marks) |        |     |           |     |          |     |       |
|------------------------------|-----------|--------------|----------------------------|--------|-----|-----------|-----|----------|-----|-------|
| Theory Practic               | Dractical | cal Tutorial | Credit                     | Theory |     | Practical |     | Tutorial |     | Total |
|                              | FIACULAI  |              |                            | CE     | ESE | CE        | ESE | CE       | ESE | TOLAI |
| 03                           | 00        | 00           | 03                         | 40     | 60  | 00        | 00  | 00       | 00  | 100   |

CE: Continuous Evaluation, ESE: End Semester Exam

#### **Objective(s) of the Course:**

To help learners to

- understand the concept of plastic, ceramic and composite material.
- know processing of plastics and ceramics materials.
- identify different manufacturing process for composite material.

| Section I     |                                                                                                                                                                                                                                                                  |       |                   |  |  |  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|--|--|--|
| Module        | Content                                                                                                                                                                                                                                                          |       | Weightage         |  |  |  |
| No.           |                                                                                                                                                                                                                                                                  |       | in %              |  |  |  |
| 1.            | <b>Introduction</b><br>Polymeric materials and comparison with other engineering<br>materials. Plastic, Thermoplastic and Thermosets, Elastomers<br>and polymers.                                                                                                | 04    | 10                |  |  |  |
| 2.            | <b>Processing of plastics and rubbers</b><br>Introduction to injection moulding, rotational moulding, extrusion, blow moulding, plastic film blowing, compound moulding, resin transfer moulding, resin injection moulding, designing with plastics and rubbers. | 09    | 20                |  |  |  |
| 3.            | <b>Fabrication and decorating of plastics</b><br>Machining of plastics, turning, drilling, sawing, threading, post -<br>moulding techniques, hot stamping, metallic coatings,<br>electroplating, printing, vacuum metalizing and some case<br>studies.           | 09    | 20                |  |  |  |
| Section II    |                                                                                                                                                                                                                                                                  |       |                   |  |  |  |
| Module<br>No. | Content                                                                                                                                                                                                                                                          | Hours | Weightage<br>in % |  |  |  |
| 1.            | <b>Ceramic materials</b><br>Atomic bonding and crystal structure in ceramics, conventional<br>ceramics and glass structure, refractory and insulating                                                                                                            | 08    | 15                |  |  |  |

|    | materials, physical, thermal, electrical, magnetic, optical and<br>piezoelectric properties, Differentiation from other engineering<br>materials, Time temperature and environmental effect on<br>properties of ceramics.                                                                                                                                                         |    |    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
| 2. | <b>Processing of ceramics</b><br>Phase Equilibrium Diagram, Gibbs phase rule, advanced<br>structural ceramics, synthesis and processing of ceramics,<br>sintering process, powder pressing and sintering fabrication<br>processes, Sintering defects, slip casting, ceramic injection<br>moulding, tape casting, properties & applications of ceramics<br>and material selection. | 07 | 15 |
| 3. | <b>Composite materials</b><br>Merits & demerits of composites, application of composite,<br>manufacturing processes of composites, Property evaluation of<br>composites.                                                                                                                                                                                                          | 08 | 20 |

#### Reference Book(s):

| Title                              | Author/s              | Publication                   |  |  |
|------------------------------------|-----------------------|-------------------------------|--|--|
|                                    |                       | Marcel Dekker, New York,      |  |  |
| Plastic Process Engineer           | Throne James L.       | 1979.                         |  |  |
| Engineering Design of Plastics and | Crowford D I          | Woodhead Publication, U.K,    |  |  |
| Rubber                             | Clawialu K.j          | 1985                          |  |  |
| Modern Ceramic Engineering,        |                       | Marcal Dokkor                 |  |  |
| Properties, Processing and Use in  | Richerson David       |                               |  |  |
| Design                             |                       | 1907                          |  |  |
| Engineering Materials and their    | Flinn R.A. and Trojan | Jaico Publishing House, 1999. |  |  |
| Applications                       | P.K.                  |                               |  |  |
| Introduction to Ceramics           | Kingery W.D, Bowen    | John Wiley & Song 1975        |  |  |
|                                    | H. K and Uhlman D.R.  | John Wiley & Johns, 1975.     |  |  |

#### **Course Evaluation:**

#### Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

#### Course Outcome(s):

- know the different processes and bedecking of plastics and rubbers.
- apply the knowledge and applications of ceramics in material selection.
- understand application of composite materials.